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Standard Model Theory: QED+EW+QCD

〈µ(~p′)|Jν(0)|µ(~p)〉 = −eū(~p′)
(
F1(q2)γν + i

F2(q2)

4m
[γν , γρ]qρ

)
u(~p)

aµ ≡ (g − 2)/2 = F2(0) (q = p′ − p)

Hadronic corrections to the muon g�2 from lattice QCD T. Blum

Table 1: Standard Model contributions to the muon anomaly. The QED contribution is through a5, EW
a2, and QCD a3. The two QED values correspond to different values of a , and QCD to lowest order (LO)
contributions from the hadronic vacuum polarization (HVP) using e+e� ! hadrons and t! hadrons, higher
order (HO) from HVP and an additional photon, and hadronic light-by-light (HLbL) scattering.

QED 11658471.8845(9)(19)(7)(30)⇥10�10 [2]
11658471.8951(9)(19)(7)(77)⇥10�10 [2]

EW 15.4(2)⇥10�10 [5]
QCD LO (e+e�) 692.3(4.2)⇥10�10, 694.91(3.72)(2.10)⇥10�10 [3, 4]

LO (t) 701.5(4.7)⇥10�10 [3]
HO HVP �9.79(9)⇥10�10 [6]
HLbL 10.5(2.6)⇥10�10 [9]

The HVP contribution to the muon anomaly has been computed using the experimentally
measured cross-section for the reaction e+e� ! hadrons and a dispersion relation to relate the real
and imaginary parts of P(Q2). The current quoted precision on such calculations is a bit more than
one-half of one percent [3, 4]. The HVP contributions can also be calculated from first principles
in lattice QCD [8]. While the current precision is significantly higher for the dispersive method,
lattice calculations are poised to reduce errors significantly in next one or two years. These will
provide important checks of the dispersive method before the new Fermilab experiment. Unlike
the case for aµ(HVP), aµ(HLbL) can not be computed from experimental data and a dispersion
relation (there are many off-shell form factors that enter which can not be measured). While model
calculations exist (see [9] for a summary), they are not systematically improvable. A determination
using lattice QCD where all errors are controlled is therefore desirable.

In Sec. 2 we review the status of lattice calculations of aµ(HVP). Section 3 is a presentation
of our results for aµ(HLbL) computed in the framework of lattice QCD+QED. Section 4 gives our
conclusions and outlook for future calculations.

Z

W

Z
...

Figure 1: Representative diagrams, up to order a3, in the Standard Model that contribute to the muon
anomaly. The rows, from to top to bottom, correspond to QED, EW, and QCD. Horizontal solid lines
represent the muon, wiggly lines denote photons unless otherwise labeled, other solid lines are leptons,
filled loops denote quarks (hadrons), and the dashed line represents the higgs boson.

3

4 / 33



Longstanding discrepancy, new experiment, new theory

INT Workshop on Hadronic Contributions to g-2, Seattle, September 2019
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Experiment - Theory

SM Contribution Value±Error (×1011) Ref notes
QED (5 loops) 116584718.951± 0.080 [Aoyama et al., 2012]

HVP LO 6931± 34 [Davier et al., 2017] 2019 → 3.3σ
6932.6 ± 24.6 [Keshavarzi et al., 2018] → 3.7σ

6925± 27 [Blum et al., 2018] lattice+R-ratio (J17), → 3.7σ
HVP NLO −98.2± 0.4 [Keshavarzi et al., 2018]

[Kurz et al., 2014]

HVP NNLO 12.4± 0.1 [Kurz et al., 2014]

HLbL 105± 26 [Prades et al., 2009] Glasgow Consensus
HLbL (NLO) 3± 2 [Colangelo et al., 2014]

Weak (2 loops) 153.6± 1.0 [Gnendiger et al., 2013]

SM Tot 116591820.5± 35.6 [Keshavarzi et al., 2018]

Exp (0.54 ppm) 116592080± 63 [Bennett et al., 2006]

Diff (Exp−SM) 259.5± 72 [Keshavarzi et al., 2018] → 3.7σ

QCD errors dominate, ∆ HLbL ∼ ∆ HVP,
Discrepancy is large
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HVP contribution to muon g-2 from dispersion relation/data

Use dispersion relation + e+e− → hadrons cross section [Bouchiat and Michel, 1961]
Dispersive method - Overview

e+

e�

� e+e� ! hadrons(�)

Jµ = V I=1,I3=0
µ + V I=0,I3=0

µ

⌧ ! ⌫hadrons(�)

Jµ = V I=1,I3=±1
µ � AI=1,I3=±1

µ

⌫

⌧ W

Knowledge of isospin-breaking corrections and separation of vector and axial-vector
components needed to use ⌧ decay data. Can do this from LQCD+QED (Bruno,
Izubuchi, CL, Meyer, 1811.00508)!

Can have both energy-scan and ISR setup.

3 / 18

Blob: all possible hadronic states

=Π̂(s) ∝ R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)

aHVP
µ =

α2

3π2

∫ ∞
4m2

π

ds
K (s)

s
R(s)
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HVP contribution to muon g-2 from dispersion relation/data

DHMZ 2017: 693.1± 3.4× 10−10

FJ 2018: 688.07± 4.14× 10−10

DHMZ 2019: 693.9± 4.0× 10−10

KNT 2018: 693.3± 2.5× 10−10

BaBar and KLOE dominate ππ channel

Longstanding discrepancy

Zhiqing Zhang (LAL, Orsay) /14+3EPS 2019, Ghent, July 10-17, 2019

Comparison with Other Determinations

13

Include other contributions in unit of 10-10: 
QCD NLO: -9.87 ± 0.07; NNLO: 1.24 ± 0.01; LBL: 10.5 ± 2.6 
EW: 15.29 ± 0.10; QED: 11 658 471.895 ± 0.008 
⇒ aµ = 11 659 182.9 ± 4.8total   

In comparison with the  
direct measurement: 
11 659 209.1 ± 6.3total 

⇒ 26.2  ± 7.9 (3.3σ)

NLO/NNLO: Kurz et al. [1511.08222] 
LBL: Prades-de Rafael-Vainshtein [0901.0306]  
EW: Tadashi-Nakazawa-Yasui [1810.13445]  
QED: Anyama-Hayakawa-Kinoshita-Nio [1205.5370] 

Zhang, et al., EPS 19

Zhiqing Zhang (LAL, Orsay) /14+3EPS 2019, Ghent, July 10-17, 2019

Combined Results Fit [<0.6 GeV] + Data [0.6-1.8 GeV]

10

√s range 
[GeV] 

aμhad [10-10] 
All data

aμhad [10-10] 
 All but BABAR

aμhad [10-10]
All but KLOE

threshold  - 1.8 506.9 ± 1.9total 505.0 ± 2.1total 510.6 ± 2.2total 

⇒ The difference “All but BABAR” and “All but KLOE” = 5.6 
     to be compared with 1.9 uncertainty with “All data” 

➤ The local error inflation is not sufficient to amplify the uncertainty 
➤ Global tension (normalisation/shape) not previously accounted for 
➤ Potential underestimated uncertainty in at least one of the measurements? 
➤ Other measurements not precise enough and are in agreement with BABAR or 

KLOE 
⇒ Given the fact we do not know which dataset is problematic, we decide to     

➤ Add half of the discrepancy (2.8) as an additional uncertainty (correcting the 
local PDG inflation to avoid double counting) 

➤ Take the mean value “All but BABAR” and “All but KLOE” as our central value
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HVP contribution to muon g-2 from lattice QCD

Use lattice QCD [Blum, 2003, Lautrup et al., 1971]

+ Blobs: Non-Perturbative quark loops

Πµν(q) =

∫
d4x e iqx〈jµ(x)jν(0)〉 = Π̂(q2)

(
qµqν − q2δµν

)
aHVP
µ =

(α
π

)2 ∫ ∞
0

dq2 f (q2) Π̂(q2)

Time Momentum Representation (TMR) [Bernecker and Meyer, 2011]

aHVP
µ =

∑
t

w(t)C (t), C (t) =
1

3

∑
i ,~x

〈ji (~x , t)ji (0)〉
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HVP contribution to muon g-2 from lattice QCD

We also compute theOðαÞ correction to the vector current
renormalization factor ZV used in Cð0Þ [18,20] and find a
small correctionof approximately0.05%for the light quarks.
We perform the calculation of Cð0Þ on the 48I and 64I

ensembles described in Ref. [18] for the up, down, and
strange quark-connected contributions. For the charm
contribution we also perform a global fit using additional
ensembles described in Ref. [19]. The quark-disconnected
contribution as well as QED and SIB corrections are
computed only on ensemble 48I.
For the noisy light quark connected contribution, we

employ a multistep approximation scheme with low-mode
averaging [25] over the entire volume and two levels of
approximations in a truncated deflated solver with all mode
averaging (AMA) [26–29] of randomly positioned point
sources. The low-mode space is generated using a new
Lanczos method working on multiple grids [30]. Our
improved statistical estimator for the quark disconnected
diagrams is described in Ref. [31] and our strategy for the
strange quark is published in Ref. [32]. For diagram F, we
reuse point-source propagators generated in Ref. [33].
The correlator CðtÞ is related to the R-ratio data [12]

by CðtÞ ¼ ½1=ð12π2Þ%
R∞
0 dð

ffiffiffi
s

p
ÞRðsÞse−

ffiffi
s

p
t with RðsÞ ¼

½ð3sÞ=4πα2%σðs; eþe− → hadÞ. In Fig. 4 we compare a
lattice and R-ratio evaluation of wtCðtÞ and note that the
R-ratio data is most precise at very short and long distances,
while the lattice data is most precise at intermediate
distances. We are therefore led to also investigate a
position-space “window method” [12,34] and write

aμ ¼ aSDμ þ aWμ þ aLDμ ð6Þ

with aSDμ ¼
P

t CðtÞwt½1 − Θðt; t0;ΔÞ%, aWμ ¼P
t CðtÞwt½Θðt; t0;ΔÞ − Θðt; t1;ΔÞ%, and aLDμ ¼

P
t CðtÞ×

wtΘðt; t1;ΔÞ, where each contribution is accessible from

both lattice and R-ratio data. We define Θðt; t0;ΔÞ ¼
f1þ tanh ½ðt − t0Þ=Δ%g=2 which we find to be helpful to
control the effect of discretization errors by the smearing
parameterΔ.We then take aSDμ and aLDμ from theR-ratio data
and aWμ from the lattice. In this work we use Δ ¼ 0.15 fm,
which we find to provide a sufficiently sharp transition
without increasing discretization errors noticeably. This
method takes the most precise regions of both data sets
and therefore may be a promising alternative to the proposal
of Ref. [35].
Analysis and results.—Table I shows our results for the

window method and pure lattice determination. We quote
statistical uncertainties for the lattice data labeled as (S) and
the R-ratio data labeled as (RST) separately. Lattice and
R-ratio uncertainties are added in quadrature. For the
quark-connected up, down, and strange contributions, the
computation is performed on two ensembles with inverse
lattice spacing a−1 ¼ 1.730ð4Þ GeV (48I) as well as a−1 ¼
2.359ð7Þ GeV (64I) and a continuum limit is taken. The
discretization error (C) is estimated by taking the maximum
of the squared measured Oða2Þ correction as well as a
simple ðaΛÞ4 estimate, where we take Λ ¼ 400 MeV. We
find the results on the 48I ensemble to differ only a few
percent from the continuum limit. This holds for the full
lattice contribution as well as the window contributions
considered in this work. For the quark-connected charm
contribution, additional ensembles described in Ref. [19]
are used and the maximum of the above, and a ðam cÞ4
estimate is taken as discretization error. The remaining
contributions are small and only computed on the 48I
ensemble for which we take ðaΛÞ2 as estimate of discre-
tization errors.
For the up and down quark-connected and disconnected

contributions, we correct finite-volume effects to leading
order in finite-volume position-space chiral perturbation
theory [36]. Note that in our previous publication of the
quark-disconnected contribution [31], we added this finite-
volume correction as an uncertainty but did not shift
the central value. We take the largest ratio of p6 to p4

corrections of Tab. 1 of Ref. [37] as systematic error
estimate of neglected finite-volume errors (V). For the SIB
correction we also include the sizable difference of the
corresponding finite and infinite-volume chiral perturbation
theory calculation as finite-volume uncertainty. For the
QED correction, we repeat the computation using an
infinite-volume photon (QED∞ [38]) and include the
difference to the QEDL result as a finite-volume error.
Further details of the QED∞ procedure are provided as
Supplemental Material [39].
We furthermore propagate uncertainties of the lattice

spacing (A) and the renormalization factors ZV (Z). For the
quark-disconnected contribution we adopt the additional
long-distance error discussed in Ref. [31] (L) and for the
charm contribution we propagate uncertainties from
the global fit procedure [19] (M). Systematic errors of the
R-ratio computation are taken from Ref. [10] and quoted as

(a) M (b) R (c) O

FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator. The figure parts
(a)–(c) assign labels M, R, and O to the respective diagrams.
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FIG. 4. Comparison of wtCðtÞ obtained using R-ratio data [10]
and lattice data on our 64I ensemble.

PHYSICAL REVIEW LETTERS 121, 022003 (2018)

022003-3

[Blum et al., 2018]

aHVP
µ = 715.4(16.3)S(7.8)V (3.0)C (1.9)A(3.2)other × 10−10 = 715.4(18.7)× 10−10

O(5− 6)× 10−10 error by end of year
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Summary of HVP theory results

Status of HVP determinations

No new physics
KNT 2018

Jegerlehner 2017
DHMZ 2017
DHMZ 2012

HLMNT 2011
RBC/UKQCD 2018

Mainz 2019
FNAL/HPQCD/MILC 2019

SK 2019
ETMC 2018

RBC/UKQCD 2018
BMW 2017
Mainz 2017

HPQCD 2016
ETMC 2013

610 630 650 670 690 710 730 750

Lattice + R-ratio

Lattice

R-ratio

aµ × 1010

2 / 18

u+d conn. contribution. [Aubin et al., 2019]

 610  630  650  670  690

this work

Mainz(2019)

Shintani and Kuramashi

Fermilab/HPQCD/MILC

ETM(2018)

RBC/UKQCD(2018)

BMW(2018)

this work

(2019)

(2019)

aμ
HVP x 1010

(C. Lehner, Lattice 2019)
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Comparing and Combing HVP theory results

C (t) =
1

12π2

∫ ∞
0

d(
√
s)R(s)se−

√
st ,

R(s) =
3s

4πα2
σ(s, e+e− → had).

We also compute theOðαÞ correction to the vector current
renormalization factor ZV used in Cð0Þ [18,20] and find a
small correctionof approximately0.05%for the light quarks.
We perform the calculation of Cð0Þ on the 48I and 64I

ensembles described in Ref. [18] for the up, down, and
strange quark-connected contributions. For the charm
contribution we also perform a global fit using additional
ensembles described in Ref. [19]. The quark-disconnected
contribution as well as QED and SIB corrections are
computed only on ensemble 48I.
For the noisy light quark connected contribution, we

employ a multistep approximation scheme with low-mode
averaging [25] over the entire volume and two levels of
approximations in a truncated deflated solver with all mode
averaging (AMA) [26–29] of randomly positioned point
sources. The low-mode space is generated using a new
Lanczos method working on multiple grids [30]. Our
improved statistical estimator for the quark disconnected
diagrams is described in Ref. [31] and our strategy for the
strange quark is published in Ref. [32]. For diagram F, we
reuse point-source propagators generated in Ref. [33].
The correlator CðtÞ is related to the R-ratio data [12]

by CðtÞ ¼ ½1=ð12π2Þ%
R∞
0 dð

ffiffiffi
s

p
ÞRðsÞse−

ffiffi
s

p
t with RðsÞ ¼

½ð3sÞ=4πα2%σðs; eþe− → hadÞ. In Fig. 4 we compare a
lattice and R-ratio evaluation of wtCðtÞ and note that the
R-ratio data is most precise at very short and long distances,
while the lattice data is most precise at intermediate
distances. We are therefore led to also investigate a
position-space “window method” [12,34] and write

aμ ¼ aSDμ þ aWμ þ aLDμ ð6Þ

with aSDμ ¼
P

t CðtÞwt½1 − Θðt; t0;ΔÞ%, aWμ ¼P
t CðtÞwt½Θðt; t0;ΔÞ − Θðt; t1;ΔÞ%, and aLDμ ¼

P
t CðtÞ×

wtΘðt; t1;ΔÞ, where each contribution is accessible from

both lattice and R-ratio data. We define Θðt; t0;ΔÞ ¼
f1þ tanh ½ðt − t0Þ=Δ%g=2 which we find to be helpful to
control the effect of discretization errors by the smearing
parameterΔ.We then take aSDμ and aLDμ from theR-ratio data
and aWμ from the lattice. In this work we use Δ ¼ 0.15 fm,
which we find to provide a sufficiently sharp transition
without increasing discretization errors noticeably. This
method takes the most precise regions of both data sets
and therefore may be a promising alternative to the proposal
of Ref. [35].
Analysis and results.—Table I shows our results for the

window method and pure lattice determination. We quote
statistical uncertainties for the lattice data labeled as (S) and
the R-ratio data labeled as (RST) separately. Lattice and
R-ratio uncertainties are added in quadrature. For the
quark-connected up, down, and strange contributions, the
computation is performed on two ensembles with inverse
lattice spacing a−1 ¼ 1.730ð4Þ GeV (48I) as well as a−1 ¼
2.359ð7Þ GeV (64I) and a continuum limit is taken. The
discretization error (C) is estimated by taking the maximum
of the squared measured Oða2Þ correction as well as a
simple ðaΛÞ4 estimate, where we take Λ ¼ 400 MeV. We
find the results on the 48I ensemble to differ only a few
percent from the continuum limit. This holds for the full
lattice contribution as well as the window contributions
considered in this work. For the quark-connected charm
contribution, additional ensembles described in Ref. [19]
are used and the maximum of the above, and a ðam cÞ4
estimate is taken as discretization error. The remaining
contributions are small and only computed on the 48I
ensemble for which we take ðaΛÞ2 as estimate of discre-
tization errors.
For the up and down quark-connected and disconnected

contributions, we correct finite-volume effects to leading
order in finite-volume position-space chiral perturbation
theory [36]. Note that in our previous publication of the
quark-disconnected contribution [31], we added this finite-
volume correction as an uncertainty but did not shift
the central value. We take the largest ratio of p6 to p4

corrections of Tab. 1 of Ref. [37] as systematic error
estimate of neglected finite-volume errors (V). For the SIB
correction we also include the sizable difference of the
corresponding finite and infinite-volume chiral perturbation
theory calculation as finite-volume uncertainty. For the
QED correction, we repeat the computation using an
infinite-volume photon (QED∞ [38]) and include the
difference to the QEDL result as a finite-volume error.
Further details of the QED∞ procedure are provided as
Supplemental Material [39].
We furthermore propagate uncertainties of the lattice

spacing (A) and the renormalization factors ZV (Z). For the
quark-disconnected contribution we adopt the additional
long-distance error discussed in Ref. [31] (L) and for the
charm contribution we propagate uncertainties from
the global fit procedure [19] (M). Systematic errors of the
R-ratio computation are taken from Ref. [10] and quoted as

(a) M (b) R (c) O

FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator. The figure parts
(a)–(c) assign labels M, R, and O to the respective diagrams.
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FIG. 4. Comparison of wtCðtÞ obtained using R-ratio data [10]
and lattice data on our 64I ensemble.

PHYSICAL REVIEW LETTERS 121, 022003 (2018)

022003-3

[Blum et al., 2018]
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Comparing and Combing HVP theory results

RBC/UKQCD Window Method [Blum et al., 2018]

aµ =
∑
t

w(t)C (t) = aSDµ + aWµ + aLDµ , (1)

aSDµ =
∑
t

w(t)C (t)[1−Θ(t, t0,∆)], (2)

aWµ =
∑
t

w(t)C (t)[Θ(t, t0,∆)−Θ(t, t1,∆)], (3)

aLDµ =
∑
t

w(t)C (t)Θ(t, t1,∆) (4)

Θ(t, t ′,∆) = [1 + tanh[(t − t ′)/∆]]/2 (5)
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Comparing and Combining HVP theory results
How does this translate to the time-like region?

Supplementary Information – S1

SUPPLEMENTARY MATERIAL

In this section we expand on a selection of technical de-
tails and add results to facilitate cross-checks of di�erent
calculations of aHVP LO

µ .

Continuum limit: The continuum limit of a selec-
tion of light-quark window contributions aW

µ is shown in
Fig. 8. We note that the results on the coarse lattice di�er
from the continuum limit only at the level of a few per-
cent. We attribute this mild continuum limit to the fa-
vorable properties of the domain-wall discretization used
in this work. This is in contrast to a rather steep contin-
uum extrapolation that occurs using staggered quarks as
seen, e.g., in Ref. [42].

The mild continuum limit for light quark contribu-
tions is consistent with a naive power-counting estimate
of (a�)2 = 0.05 with � = 400 MeV and suggests that
remaining discretization errors may be small. Since we
find such a mild behavior not just for a single quantity
but for all studied values of aW

µ with t0 ranging from 0.3
fm to 0.5 fm and t1 ranging from 0.3 fm to 2.6 fm, we
suggest that it is rather unlikely that the mild behav-
ior is result of an accidental cancellation of higher-order
terms in an expansion in a2. This lends support to our
quoted discretization error based on an O(a4) estimate.
In future work, this will be subject to further scrutiny by
adding a data-point at an additional lattice spacing.

Energy re-weighting: The top panel of Fig. 9 shows
the weighted correlator wtC(t) for the full aµ as well as
short-distance and long-distance projections aSD

µ and aLD
µ

for t0 = 0.4 fm and t1 = 1.5 fm. The bottom panel of
Fig. 9 shows the corresponding contributions to aµ sep-
arated by energy scale

p
s. We notice that, as expected,

aSD
µ has reduced contributions from low-energy scales and

aLD
µ has reduced contributions from high-energy scales.

In the limit of projection to su�ciently long distances, we
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FIG. 8. Continuum limit of light-quark aW
µ with t0 = 0.4 fm

and � = 0.15 fm.
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FIG. 9. Window of R-ratio data in Euclidean position space
(top) and the e�ect of the window in terms of re-weighting
energy regions (bottom).

may attempt to contrast the R-ratio data directly with
an exclusive study of the low-lying ⇡⇡ states in the lattice
calculation. This is left to future work.

Statistics of light-quark contribution: We use an
improved statistical estimator including a full low-mode
average for the light-quark connected contribution in the
isospin symmetric limit as discussed in the main text.
For this estimator, we find that we are able to saturate
the statistical fluctuations to the gauge noise for 50 point
sources per configuration. For the 48I ensemble we mea-
sure on 127 gauge configurations and for the 64I ensem-
ble we measure on 160 gauge configurations. Our result
is therefore obtained from a total of approximately 14k
domain-wall fermion propagator calculations.

Results for other values of t0 and t1: In Tabs. S I-
S VII we provide results for di�erent choices of window
parameters t0 and t1. We believe that this additional
data may facilitate cross-checks between di�erent lattice
collaborations in particular also with regard to the up
and down quark connected contribution in the isospin
limit.
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µ is shown in
Fig. 8. We note that the results on the coarse lattice di�er
from the continuum limit only at the level of a few per-
cent. We attribute this mild continuum limit to the fa-
vorable properties of the domain-wall discretization used
in this work. This is in contrast to a rather steep contin-
uum extrapolation that occurs using staggered quarks as
seen, e.g., in Ref. [42].

The mild continuum limit for light quark contribu-
tions is consistent with a naive power-counting estimate
of (a�)2 = 0.05 with � = 400 MeV and suggests that
remaining discretization errors may be small. Since we
find such a mild behavior not just for a single quantity
but for all studied values of aW

µ with t0 ranging from 0.3
fm to 0.5 fm and t1 ranging from 0.3 fm to 2.6 fm, we
suggest that it is rather unlikely that the mild behav-
ior is result of an accidental cancellation of higher-order
terms in an expansion in a2. This lends support to our
quoted discretization error based on an O(a4) estimate.
In future work, this will be subject to further scrutiny by
adding a data-point at an additional lattice spacing.

Energy re-weighting: The top panel of Fig. 9 shows
the weighted correlator wtC(t) for the full aµ as well as
short-distance and long-distance projections aSD

µ and aLD
µ

for t0 = 0.4 fm and t1 = 1.5 fm. The bottom panel of
Fig. 9 shows the corresponding contributions to aµ sep-
arated by energy scale

p
s. We notice that, as expected,

aSD
µ has reduced contributions from low-energy scales and

aLD
µ has reduced contributions from high-energy scales.

In the limit of projection to su�ciently long distances, we
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may attempt to contrast the R-ratio data directly with
an exclusive study of the low-lying ⇡⇡ states in the lattice
calculation. This is left to future work.

Statistics of light-quark contribution: We use an
improved statistical estimator including a full low-mode
average for the light-quark connected contribution in the
isospin symmetric limit as discussed in the main text.
For this estimator, we find that we are able to saturate
the statistical fluctuations to the gauge noise for 50 point
sources per configuration. For the 48I ensemble we mea-
sure on 127 gauge configurations and for the 64I ensem-
ble we measure on 160 gauge configurations. Our result
is therefore obtained from a total of approximately 14k
domain-wall fermion propagator calculations.

Results for other values of t0 and t1: In Tabs. S I-
S VII we provide results for di�erent choices of window
parameters t0 and t1. We believe that this additional
data may facilitate cross-checks between di�erent lattice
collaborations in particular also with regard to the up
and down quark connected contribution in the isospin
limit.

Most of ⇡⇡ peak is captured by window from t0 = 0.4 fm to t1 = 1.5 fm,
so replacing this region with lattice data reduces the dependence on
BaBar versus KLOE data sets.
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(RSY). The neglected bottom quark (b) and charm sea
quark (c) contributions as well as effects of neglected QED
(Q̄) and SIB (S̄) diagrams are estimated as described in the
previous section.
For the QED and SIB corrections, we assume dominance

of the low-lying ππ and πγ states and fit Cð1Þ
QEDðtÞ as well as

Cð1Þ
Δm f

ðtÞ to ðc1 þ c0tÞe−Et, where we vary c0 and c1 for
fixed energy E. The resulting p values are larger than 0.2
for all cases and we use this functional form to compute the
respective contribution to aμ. For the QED correction, we
vary the energy E between the lowest ππ and πγ energies
and quote the difference as additional uncertainty (E). For
the SIB correction, we take E to be the ππ ground-state
energy.

For the light quark contribution of our pure lattice
result we use a bounding method [42] similar to
Ref. [43] and find that upper and lower bounds meet
within errors at t ¼ 3.0 fm. We vary the ground-state
energy that enters this method [44] between the free-field
and interacting value [45]. For the 48I ensemble we find
Efree
0 ¼ 527.3 MeV, E0 ¼ 517.4 MeVþOð1=L6Þ and for

the 64I ensemble we have Efree
0 ¼ 536.1 MeV,

E0 ¼ 525.1 MeVþOð1=L6Þ. We quote the respective
uncertainties as (E48) and (E64). The variation of ππ
ground-state energy on the 48I ensemble also enters the
SIB correction as described above.
Figure 5 shows our results for the window method with

t0 ¼ 0.4 fm. While the partial lattice and R-ratio contribu-
tions change by several 100 × 10−10, the sum changes only
at the level of quoted uncertainties. This provides a non-
trivial consistency check between the lattice and the
R-ratio data for length scales between 0.4 fm and
2.6 fm. We expand on this check in the Supplemental
Material [39]. The uncertainty of the current analysis is
minimal for t1 ¼ 1 fm, which we take as our main result for
the window method. For t0 ¼ t1 we reproduce the value of
Ref. [10]. In Fig. 6, we show the t1 dependence of
individual lattice contributions and compare our results
with previously published results in Fig. 7. Our combined

TABLE I. Individual and summed contributions to aμ multiplied by 1010. The left column lists results for the window method with
t0 ¼ 0.4 fm and t1 ¼ 1 fm. The right column shows results for the pure first-principles lattice calculation. The respective uncertainties
are defined in the main text.

aud;conn;isospinμ 202.9ð1.4ÞSð0.2ÞCð0.1ÞVð0.2ÞAð0.2ÞZ 649.7ð14.2ÞSð2.8ÞCð3.7ÞVð1.5ÞAð0.4ÞZð0.1ÞE48ð0.1ÞE64
as;conn;isospinμ 27.0ð0.2ÞSð0.0ÞCð0.1ÞAð0.0ÞZ 53.2ð0.4ÞSð0.0ÞCð0.3ÞAð0.0ÞZ
ac;conn;isospinμ 3.0ð0.0ÞSð0.1ÞCð0.0ÞZð0.0ÞM 14.3ð0.0ÞSð0.7ÞCð0.1ÞZð0.0ÞM
auds;disc;isospinμ −1.0ð0.1ÞSð0.0ÞCð0.0ÞVð0.0ÞAð0.0ÞZ −11.2ð3.3ÞSð0.4ÞVð2.3ÞL
aQED;connμ 0.2ð0.2ÞSð0.0ÞCð0.0ÞVð0.0ÞAð0.0ÞZð0.0ÞE 5.9ð5.7ÞSð0.3ÞCð1.2ÞVð0.0ÞAð0.0ÞZð1.1ÞE
aQED;discμ −0.2ð0.1ÞSð0.0ÞCð0.0ÞVð0.0ÞAð0.0ÞZð0.0ÞE −6.9ð2.1ÞSð0.4ÞCð1.4ÞVð0.0ÞAð0.0ÞZð1.3ÞE
aSIBμ 0.1ð0.2ÞSð0.0ÞCð0.2ÞVð0.0ÞAð0.0ÞZð0.0ÞE48 10.6ð4.3ÞSð0.6ÞCð6.6ÞVð0.1ÞAð0.0ÞZð1.3ÞE48
audsc;isospinμ 231.9ð1.4ÞSð0.2ÞCð0.1ÞVð0.3ÞAð0.2ÞZð0.0ÞM 705.9ð14.6ÞSð2.9ÞCð3.7ÞVð1.8ÞAð0.4ÞZð2.3ÞLð0.1ÞE48ð0.1ÞE64ð0.0ÞM
aQED;SIBμ 0.1ð0.3ÞSð0.0ÞCð0.2ÞVð0.0ÞAð0.0ÞZð0.0ÞEð0.0ÞE48 9.5ð7.4ÞSð0.7ÞCð6.9ÞVð0.1ÞAð0.0ÞZð1.7ÞEð1.3ÞE48
aR−ratioμ 460.4ð0.7ÞRSTð2.1ÞRSY
aμ 692.5ð1.4ÞSð0.2ÞCð0.2ÞVð0.3ÞAð0.2ÞZð0.0ÞEð0.0ÞE48 715.4ð16.3ÞSð3.0ÞCð7.8ÞVð1.9ÞAð0.4ÞZð1.7ÞEð2.3ÞL

ð0.0Þbð0.1Þcð0.0ÞS̄ð0.0ÞQ̄ð0.0ÞMð0.7ÞRSTð2.1ÞRSY ð1.5ÞE48ð0.1ÞE64ð0.3Þbð0.2Þcð1.1ÞS̄ð0.3ÞQ̄ð0.0ÞM
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PHYSICAL REVIEW LETTERS 121, 022003 (2018)

022003-4

Lattice+R ratio: aHVP
µ = 692.5(2.7)× 10−10 [Blum et al., 2018]
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Comparing and Combining HVP theory results
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Hadronic Light-by-Light Scattering

Pion-pole contribution to aHLbL
µ in dispersive framework

Pion-pole prescription from Knecht + AN ’02, Colangelo et al. ’14, ’15, Pauk
+ Vanderhaeghen ’14

⇡0, ⌘, ⌘0

aHLbL;⇡0

µ =
⇣↵e

⇡

⌘3 ⇣
aHLbL;⇡0(1)

µ + aHLbL;⇡0(2)
µ

⌘

↵e is the fine-structure constant and [Jegerlehner + AN ’09]

aHLbL;⇡0(1)
µ =

Z 1

0
dQ1

Z 1

0
dQ2

Z 1

�1
d⌧ w1(Q1, Q2, ⌧) F

⇡0�⇤�⇤ (�Q2
1 , �(Q1 + Q2)2) F

⇡0�⇤�⇤ (�Q2
2 , 0)

aHLbL;⇡0(2)
µ =

Z 1

0
dQ1

Z 1

0
dQ2

Z 1

�1
d⌧ w2(Q1, Q2, ⌧) F

⇡0�⇤�⇤ (�Q2
1 , �Q2

2 ) F
⇡0�⇤�⇤ (�(Q1 + Q2)2, 0)

3-dim. integration over lengths Qi = |(Qi )µ|, i = 1, 2 of the two Euclidean
momenta and angle ✓ between them Q1 · Q2 = Q1Q2 cos ✓ with ⌧ = cos ✓.
w1,2(Q1, Q2, ⌧) are model-independent weight functions which are concentrated
at small momenta below 1 GeV [AN ’16].
TFF F⇡0�⇤�⇤(�Q2

1 ,�Q2
2 ) from data-driven dispersive approach or lattice QCD.

+ + · · ·
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Analytic/Data Approach to HLbL Summary G. Colangelo, INT (Seattle) September 2019

Intro HLbL to (g � 2)µ Exp. input Conclusions PS-pole 2⇡ Higher hadrons SDC Summary

Improvements obtained with the dispersive approach

Contribution PdRV(09) N/JN(09) J(17) White Paper
⇡0, ⌘, ⌘0-poles 114 ± 13 99 ± 16 95.45 ± 12.40 93.8 ± 4.0
⇡, K -loop/box �19 ± 19 �19 ± 13 �20 ± 5 �16.4 ± 0.2

S-wave ⇡⇡ � � � �8 ± 1
scalars �7 ± 7 �7 ± 2 �5.98 ± 1.20

�
� 2 ± 3tensors � � 1.1 ± 0.1

axials 15 ± 10 22 ± 5 7.55 ± 2.71 8 ± 8
q-loops / SD 2.3 21 ± 3 22.3 ± 5.0 10 ± 10

total 105 ± 26 116 ± 39 100.4 ± 28.2 85 ± XX

HLbL in units of 10�11.
PdRV = Prades, de Rafael, Vainshtein (“Glasgow consensus”); N = Nyffeler;
J = Jegerlehner
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HLbL contribution to g-2 from lattice QCD+QED

QED treated in finite volume: QEDL [Blum et al., 2015]

QED treated in ∞ volume, continuum: QED∞ [Asmussen et al., 2016]

RBC results at physical mass, V →∞, a→ 0, QEDL; prelim results for QED∞
Mainz and RBC cross-checked at heavy mass, QED∞

Mainz computed pion TFF, pion-pole contribution, V →∞, a→ 0

RBC preliminary results for pion-pole contribution
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Point source method in QCD+pQED (L. Jin) [Blum et al., 2016]

Importance sample point source propagators at x and y
Point Source Photon Method 7/20

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z,κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z,κ

y, σ x, ρ

• Point source photons at x and y.

• Importance sampling is used in choosing x and y.

− Major contribution comes from the region where x and y are not far separated.

− In fact, we can evaluate all possible (upto discrete symmetries) relative positions for
distance less than a certain value rmax, which is normally set to be 5 lattice units.

• Moment method for xop. Evaluate F2(q
2) at q = 0 directly.

Method published in Phys.Rev. D93 (2016) no.1, 014503. Order 1000 improvement over the
previous approach [Phys.Rev.Lett. 114 (2015) no.1, 012001].

Three diagrams together enforce Ward Identity on each configuration

Moment method allows computation of F2(q2) directly at q = 0

Techniques produce huge improvement in statistical error over original
non-perturbative QED method [Blum et al., 2015]
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Quark-line disconnected diagrams

xsrc xsnkz′, κ′ y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κy, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κy, σ x, ρ

Leading O(ms −mu,d )

xsrc xsnkz′, κ′ y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κ
y, σ x, ρ

xsrc xsnkz′, κ′

y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

O(ms −mu,d )
2 and higher

only 1 diagram (upper-left) does not vanish in SU(3) flavor limit

Perms. of internal photons, gluons within and connecting quark loops not shown
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HLbL, QEDL, mπ ≈ 140 MeV, 4.8 <∼ L <∼ 9.6 fm, 1 <∼ a−1 <∼ 2.3 GeV

Cumulative sum up to distance r , max between sampled points

23 / 33



HLbL, QEDL, mπ ≈ 140 MeV, ∞ Volume and a→ 0 limits

aµ(L, aI, aD) = aµ

(
1− b1

(mµL)2
− c1(aI)2 − c1(aD)2 + c2(aD)4

)
connected disconnected total

(RBC, preliminary)

acHLbL = 24.16(2.30)(5.10)× 10−10

adHLbL = −17.12(3.46)(4.37)× 10−10

aHLbL = 7.2(4.0)(1.7)× 10−10
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Infinite volume QED∞ [Asmussen et al., 2016, Blum et al., 2017]

QCD in finite volume, QED in ∞ volume, continuum (c .f . HVP contribution)

HLbL point source method [L. Jin et al. 1510.07100]

• Anomalous magnetic moment, F2(q
2) at q2 ! 0 limit

F cHLbL
2 (q2 = 0)

m

(�s0,s)i

2
=

P
x,y,z,xop

2V T
✏i,j,k (xop � xref)j · iūs0(~0)FC

k (x, y, z, xop) us(~0),

• Stochastic sampling of x and y point pairs. Sum over x and z.

FC
⌫ (x, y, z, xop) = (�ie)

6G⇢,�,(x, y, z)HC
⇢,�,,⌫(x, y, z, xop),

xsrc xsnk↵, ⇢ ⌘, �,�

xop, ⌫

z,

x, ⇢ y,�

tsrc tsnk↵, ⇢ ⌘, �,�

z

x y

Taku Izubuchi, Lattice 2017, June 23, 2017 6

analytic integral, computed numerically for
each triplet x , y , z

Subtract terms that vanish as a→ 0, L→∞ to reduce O(a2) errors [Blum et al., 2017]

Leading FV error is exponentially suppressed (c .f . HVP) instead of O(1/L2)
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Pion pole from lattice (Cheng Tu) N. Christ, Muon Theory g-2 Initiative HLbL Workshop, UConn 2018

Long distance part computed in position space on lattice QCD, 〈Jµ(x)Jν(x ′)|π〉

GQM;@/Bbi�M+2 π0 TQH2, `2bmHib UT`2HBKV jy f j8
Ç l*PLL ;`�/m�i2 bim/2Mi *?2M; hm /B/ i?2 +�H+mH�iBQMX

0
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a
µ
×
10

1
0

Rmax (fm)

LMD
24D
32D

x

x
′

y

y
′

π
0

π
0

Ç k9., 243 × 64

Ç jk., 323 × 64

Ç a−1 = 1.015 :2o
Mπ = 142 J2o

Ç Rmax = max(|x − y |, |x − y ′|, |y − y ′|)X
_2p2`b2 T�`iB�H bmK THQii2/X
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HLbL, QED∞+π0-pole (LMD), mπ = 142 MeV, a = 0.2 fm, L = 6.4 fm

connected disconnected total
*QMM2+i2/ !mπ = 142J2o UT`2HBKV ke f j8
139MeV pion, connected diagram, 32D (prelim) 50/50
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LMD model.

• max (|x� y |, |x� z |, |y � z |) = Rmax

• Short distance: lattice calculation with 32D (6.4 fm, 1.015 GeV) (partial sum upto Rmax).

• Long distance: LMD model multiplied by 34/9 (partial sum from Rmax upto infinity).

• At Rmax= 2.5fm, the combined result is aµ
cHLbL= 29.19(0.73)stat⇥ 10�10.

• Previous extrapolated results with QEDL is aµ
cHLbL= 27.61(3.51)stat(0.32)sys,a2⇥ 10�10.

.Bb+QMM2+i2/ !mπ = 142J2o UT`2HBKV kd f j8
139MeV pion, leading discon diagram, 32D (prelim) 52/50
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LMD model.

• max (|x� y |, |x� z |, |y � z |) = Rmax

• Short distance: lattice calculation with 32D (6.4 fm, 1.015 GeV) (partial sum upto Rmax).

• Long distance: LMD model multiplied by �25/9. (partial sum from Rmax upto infinity).

• At Rmax= 2.5fm, the combined result is aµ
discon=�17.79(1.13)stat⇥ 10�10.

Previous extrapolated results with QEDL is aµ
discon=�20.20(5.65)stat⇥ 10�10.

hQi�H !mπ = 142J2o UT`2HBKV k3 f j8
139MeV pion, con+leading discon, 32D (prelim) 53/50
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• max (|x� y |, |x� z |, |y � z |) = Rmax

• Short distance: lattice calculation with 32D (6.4 fm, 1.015 GeV) (partial sum upto Rmax).

• Long distance: LMD model. (partial sum from Rmax upto infinity).

• At Rmax= 2.5fm the combined results is aµ
total= 11.40(1.27)stat⇥ 10�10

the part from lattice is 6.78(1.27)stat⇥ 10�10.

Previous extrapolated results with QEDL is aµ
total= 7.41(6.32)stat(0.32)sys,a2⇥ 10�10.

(RBC, preliminary)

At 2.5 fm, the combination gives aµ = 11.47± 1.27stat × 10−10
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Non-leading disconnected contribution to HLbL, QED∞ (preliminary)

RBC
am#H2�/BM; /Bb+QM mπ = 142 J2o T`2HBK jk f j8

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κy, σ x, ρ
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Progress in the Mainz e↵ort to compute aHLBL
µ from the lattice

Lattice Implementation
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,

Renwick Hudspith - Progress in aHLBLµ from the lattice

Mainz (220 MeV pion)

negligible contribution compared to error on leading contributions
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Hadronic contributions from lattice QCD Summary

Lattice calculations crucial for Standard Model
test with experiment (FNAL E989, J-PARC J34)
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Muon g-2 Theory Initiative

White paper with new consensus theory value by
end of year
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