

KATRIN experiment: first neutrino mass result and future prospects

Alexey Lokhov on behalf of KATRIN collaboration

13th European Research Conference on Electromagnetic Interactions with Nucleons and Nuclei Paphos, Cyprus

living.knowledge

Kan Hitigan Neutrino Fr

- Neutrino masses in particle physics and cosmology
- Neutrino mass measurements
 - Complementary ways to the neutrino mass scale
 - Tritium β-decay spectrum
- KATRIN experiment
 - Setup
 - MAC-E-Filter Principle
 - Experimental response
 - First Tritium
 - First neutrino mass result
 - Current status and future
- Conclusion and Outlook

Neutrino masses in particle physics and cosmology

 m_3^2

 m_{2}^{2}

m₁²

- Discovery of the neutrino oscillations
 - non-zero neutrino masses
 - Physics Nobel Prize 2015:

Prof. Dr. T. Kajita, Prof. Dr. A.B. McDonald

- Neutrino mass ordering
- A small ν mass generation mechanism is needed, likely beyond the Standard model Higgs

- The most abundent massive particle in the Universe 336 v cm⁻³
 - only weak interaction with matter

Three ways to assess the absolute neutrino mass scale

1) Cosmology

very sensitive, but model dependent compares power at different scales current sensitivity: $\Sigma m(v_i) \approx 0.12 \text{ eV}$ (Planck)

2) Search for $0\nu\beta\beta$

Sensitive to Majorana neutrinos, model-dependent Upper limits by EXO-200, KamLAND-Zen, GERDA, CUORE: $m_{_{\beta\beta}} < 0.1-0.4 \text{ eV}$

3) Direct neutrino mass determination

No further assumptions needed, use $E^2 = p^2c^2 + m^2c^4$ $\Rightarrow m^2(v)$

Time-of-flight measurements (v from supernova)
Kinematics of weak decays / beta decays, e.g. tritium, ¹⁶³Ho
best upper limits m(v) < 2 eV (Mainz & Troitsk)</p>

N. Aghanim et al. (Planck), (2018), arXiv:1807.06209; M. J. Dolinski, A. W. Poon, and W. Rodejohann, Annual Review of Nuclear and Particle Science 69, 219 (2019); Eur. Phys. J. C 40, 447 (2005); Phys. Rev. D 84, 112003

• continuous β -spectrum described by Fermi's Golden Rule, measurement of effective mass m(v_e) based on kinematic parameters & energy conservation

WWU Tritium β -decay - T_2

7

atomic source (T) would have simpler FSD but difficult to handle – PROJECT 8 A. Ashtari Esfahani et al. (Project 8), J. Phys.

The KATRIN experiment at Karlsruhe Institute for Technology

WWU MÜNSTER

MAC-E-Filter: high-resolution βspectroscopy

Magnetic Adiabatic Collimation & Electrostatic Filter:

Momentum tranfsormation without the E-field

Measuring the response with ^{83m}Kr

filter width

- MAC-E filter characteristics well understood
- (also used to study plasma)

WWU

MÜNSTER

 $\simeq \frac{B_{\min}}{\cdot E}$

max

E

Model of the experimental spectrum

WWU

MÜNSTER

First Tritium (2-week engineering run in 2018)

- Rirst Tritium:
- low tritium concentration:
 - ~1% DT and ~99% $D_{\rm 2}$
- functionality of all system components at nominal column density ρd (5.10¹⁷ cm⁻²)
- stability of the source parameters
 - → sub per mille level

KATRIN neutrino mass run # 1

- \hbar 4-week long measuring campaign in spring 2019 with high-purity tritium
- April 10 May, 13 2019: 780 h
- high-purity tritium

(ϵ_{T} = 97.5 % by laser-Raman spectr.)

- high source activity (22% nominal): $2.45 \cdot 10^{10}$ Bq
- high-quality data collected
- full analysis chain using two independent methods

274 scans of tritium β-spectrum: alternating up- / down- scans 2 h net scanning time analysis: 27 HV set points

still limited bg-slope

 $-[E_0 - 40 \text{ eV}, E_0 + 50 \text{ eV}]$

Measurement point distribution maximises v-mass sensitivity

- focus on region close to E_{0}

17

Fitting tritium β-decay spectrum

$\hat{\mathbb{R}}$ High-statistics β -spectrum

WWU

- 2 million events in in 90-eV-wide interval (522 h of scanning, 274 indiv. scans)
- fit with 4 free parameters: $m^{2}(v_{e}), R_{bg}, A_{s}, E_{0}$ excellent goodness-of-fit $\chi^{2} = 21.4$ for 23 d.o.f.
 - (p-value = 0.56)

Å Bias-free analysis

- blinding of FSD
- full analysis chain first on MC data sets
- final step: unblinded FSD for experimental data (arXiv:1

Analysis methods and v-mass result

 $\hat{\mathbb{A}}$ two independent analysis methods

to propagate uncertainties & infer parameters

- Covariance matrix:

WWU

MÜNSTER

covariance matrix + χ^2 -estimator

- MC propagation:

Ŕ

10⁵ MC samples + likelihood (-2 In L)

- both methods agree to a few percent
- v-mass and E_0 : best fit results

 $m^{2}(v_{e}) = -1.0^{+0.9} -1.1 eV^{2}$

- $E_0 = (18573.7 \pm 0.1) \text{ eV}$
- → **Q-value**:

(18575.2 ± 0.5) eV

→ Q-value[ΔM(³H,³He)]: (18575.72 ± 0.07) eV

E.G. Myers, A. Wagner, H. Kracke, B.A. Wesson, Phys. Rev. Lett. 114, 013003 (2015)

KATRIN collab. arXiv:1909.06048 subm. to Phys. Rev. Lett.

19

\hbar confidence belts: procedures of Lokhov and Tkachov (LT) + Feldman and Cousins (FC)

- for this first result we follow the robust LT method
- LT yields experimental sensitivity by construction for $m^2(v_e) < 0$
- KATRIN upper limit on

neutrino mass:

LT m(v) < 1.1 eV (90% CL)

FC m(v) < 0.8 eV (90% CL) < 0.9 eV (95% CL)

< 0.9 eV (95% CL)

A.V. Lokhov, F.V. Tkachov, Phys. Part. Nucl. 46 (2015) 347 G. J. Feldman and R. D. Cousins, Phys. Rev. D 57 (1998) 3873

New upper limit on neutrino mass

Systematics breakdown

- $\hat{\mathbb{R}}$ well-understood systematics budget σ_{syst} (with $\sigma_{syst} < \sigma_{stat}$)
 - total statistical uncertainty budget $\sigma_{stat} = 0.97 \text{ eV}^2$

WWU

- total systematic uncertainty budget $\sigma_{syst} = 0.32 \text{ eV}^2$

x2 better than Mainz & Troitsk x6 better than Mainz & Troitsk

- Secondary electrons from ²¹⁹Rn decays
 - Efficient reduction via nitrogencooled baffle system

- Highly excited H atoms, "Rydberg" states, ionized by thermal radiation
 - current: 0.36 cps (design: 0.01 cps)

Outlook: Background reduction Flux tube in the main spectrometer

400

-400

Further background reduction

- ⇒ spectrometer bake-out successful
- more effective baffles
 - cooled by under-pressured LN
 - better ²¹⁹Rn retention
- Volume dependent background rate
 - reduce the volume of the flux
 - ⇒ upgraded air coil system
 - \Rightarrow "shifted analyzing plane" (SAP) \square
 - factor 2 signal/background improvement
 - background & calibration & tritium scans

Outlook: KATRIN - future plans

- Currently taking T₂ data (~30 days) of the 2nd science run at 4x more tritium in the source
 Eurther reduction of exetemation
- Further reduction of systematics
 - \Rightarrow energy loss via egun in ToF modus
 - \Rightarrow plasma effects in the source
 - ⇒ ...
- R&D works on ToF-technique for differential tritium scanning
- 1000 days of measurements at nominal pd (5 · 10¹⁷ molecules cm⁻²)
 3 tritium campaigns (65 days each) per calendar year

Outlook: keV sterile neutrino search with KATRIN

- 4-th mass eigenstate of neutrino
 - model
 - DM candidate
- Look for the kink in the β -spectrum
- TRISTAN project developing a new detector & DAQ system
 - large count rates
 - good energy resolution
 - Silicon Drift Detector

S. Mertens et al., arXiv: 1810.06711; T.Brunst et al., arXiv: 1909.02898

• First neutrino mass result by KATRIN:

$m_v < 1.1 \text{ eV}$ (90 % C.L.)

- Statistical error reduced by x2, systematic error x6
- Stable operation at high tritium purity and source activity
- Further reduction of systematics and background
- KATRIN is taking data (3 cycles/year) to reach the ultimate sensitivity of 0.2 eV (90 % C.L.)
- Background reduction techniques are being tested (SAP, ToF)
- Search for the BSM physics (light and heavy sterile neutrinos, light bosons, etc.)
- Stay tuned for the new results KATRIN

