Final The Proton Radius: Preliminary Result from the PRad Experiment

Nilanga Liyanage University of Virginia

for the PRad collaboration

ERSIT

Jeffers

Outline

- The proton
- Proton Radius Puzzle: current status
- Our approach for a new ep scattering

experiment: Prad Final Preliminary results

- Summary and outlook

IAUIC **OIL SPILLS** There's more to come **DI AGIADISM**

8 July 2010 www.nature.com/nature £10

nature

466, 151-284 8 July 2010

NKING PROT

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

New value from exotic atom trims radius by four per cent

Randolph Pohl et al.

Story of the Proton

Proton is the most studied sub-atomic particle

• It has been over hundred years since Rutherford postulated the existence of the proton

• In 1933 Stern measured the anomalous magnetic moment of the proton to show that proton is NOT an elementary point like particle.

Electron Scattering to Probe the Proton

Hofstadter 1958: electron scattering to measure proton radius ~ 0.8 fm.

Electron Scattering to Probe the Proton

Hofstadter used the charge form factor to describe the charge distribution of the proton:

So the probability of elastically scattering off the proton:

$$\sigma(\theta_e) = \sigma_{Mott} |F(\mathbf{q})|^2 \implies [F(\mathbf{q})]^2 = \frac{\sigma(\mathbf{q})}{\sigma_{Mott}(\mathbf{q})}$$

Story of the Proton, continued....

MIT-SLAC experiments 1967: Deep Inelastic electron Scattering off protons to confirm the quarks inside the proton.

Kendall, Friedman and Taylor et al.

Story of the Proton, continued....

- 1970's: Quantum Chromo Dynamics (QCD): theoretical framework for strong interaction between quarks medicated by gluons.
- 1980's Today: Looking deep inside the proton

Proton: an ideal laboratory to understand strong interaction

Many deep questions to answer

- How does proton acquire its mass: only ~1% of proton mass comes from Higgs.
- What are the different contributions to nucleon spin ?
- How does the confinement come about ?
- What role does the gluon play in all these ??

Exciting times ahead for the proton

- Jefferson Lab 12 GeV
 - 3D structure of the proton: GPDs
 - Ground stated properties with high resolution: high Q^2 FF.
- Electron Ion Collider
 - Understand the role of gluon

Surely, there is a lot to learn about the proton, ...

But we thought we at least understood the ground state bulk properties of the
0.84 fm0.88 fm

Surely, there is a lot to learn about the proton, ...

But we thought we at least understood the ground state bulk properties of the proton well, until....

- Important bench-mark quantity for many calculations.
 - nuclear physics (QCD, Lattice, ...)
 - atomic physics (QED, Lamb shifts, ...)
- directly correlated to the Rydberg constant (most accurately known constant in physics)
- potential for "New Physics"
 - Lepton universality in question ??? !!
 - Coupling to unknown particles ?

Elastic electron-proton Scattering Formalism

In one photon approximation the elastic *ep* scattering

$$\sigma_R = (d\sigma/d\Omega)/(d\sigma/d\Omega)_{\rm Mott} = \tau G_M^2 + \varepsilon G_E^2$$

$$Q^2 = 4EE'\sin^2\frac{\theta}{2} \qquad \tau = \frac{Q^2}{4M_p^2} \qquad \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1}$$

•
$$G_E(Q^2)$$
 and $G_M(Q^2)$ extracted using Rosenbluth separation

- Measure the reduced cross section at several values of ε while keeping Q² fixed.
- Extract $G_{\rm E}$ from the slope
- At extremely low Q^2 the G_M contribution is small, like in the PRad experiment

Proton Mean Square Charge Radius

Classically:

$$\left\langle r^2 \right\rangle = \int \rho(r) r^2 d^3 r$$

Using the QED formalism: with the Expanding Electric FF $G_E(Q^2)$ in Taylor series:

$$G^p_E(Q^2) = 1 - \frac{Q^2}{6} \langle r^2 \rangle + \frac{Q^4}{120} \langle r^4 \rangle + \dots$$

We have:

$$\left\langle r^{2} \right\rangle = -6 \frac{dG_{E}(Q^{2})}{dQ^{2}} \bigg|_{Q^{2}=0}$$

15

Proton Mean Square Charge Radius

Proton Radius from electron-proton Scattering

Mainz Microtron

- cw electron beam
- 10 μA polarized, 100 μA unpolarized
 MAMI A+B: 180-855 MeV
- MAMI C: 1.6 GeV

A1 3-spectrometer facility

- 28 msr acceptance
- angle resolution: 3 mrad
- momentum res.: 10⁻⁴

• Mainz data come from a wide range of beam energies and spectrometer angles: required separation of G_E from G_M

• Mainz G_E agrees with G_E from Jlab Hall A; but G_M disagrees

electron-proton Scattering data from Mainz

Bernauer et. al. Phys. Rev. Lett, 105, 242001 (2010), Phys. Rev. C 90. 015206 (2014)

Time evolution of Proton Radius from e-p Scattering

In either case electron interacting with proton through Coulomb interaction,

Coulomb interaction which is modified due to the extended charge distribution of the proton

20

radius [fm]

$$\delta V(\mathbf{r}) \equiv V_C(\mathbf{r}) - V_C^{\rm pt}(\mathbf{r}) = -4\pi\alpha \int \frac{d^3q}{(2\pi)^3} \frac{[G_{\rm E}(\mathbf{q}^2) - 1]e^{-i\mathbf{q}\cdot\mathbf{r}}}{\mathbf{q}^2}.$$

Regular Hydrogen spectroscopy

Proton Radius Before 2010 CODATA-2014

CODATA average: 0.8751 ± 0.0061 fmep-scattering average (CODATA): 0.879 ± 0.011 fmRegular H-spectroscopy average (CODATA): 0.859 ± 0.0077 fm

Very good agreement between ep-scattering and H-spectroscopy results !

Electronic and Muonic Hydrogen

Muonic hydrogen:

Proton + Muon

Muon mass = 200 * electron mass

Bohr radius = 1/200 of H

200³ = a **few million times** more sensitive to proton size

muon

Probability for lepton inside proton~ volume of proton / volume of atom

Muonic Hydrogen Spectroscopy Experiment

- Form μH^* (n~14) by firing muon beam on 1 mbar H_2 target.
- 99% decay to 1S emitting prompt 2 keV photons.
- 1% decay to long lived 2S state.
- Excite from 2S to 2P using tuned laser: decay from 2P to 1S emitting delayed 2 keV photons.
- Vary laser frequency, find 2S-2P resonance.

Plots from R. Pohl

Muonic Hydrogen Spectroscopy Experiment

Resonance in muonic hydrogen

Pohl et al. (CREMA Coll.), Nature 466, 213 (2010)

So, how do we resolve this puzzle?

Proton Radius Puzzle, getting even more puzzling.....

Regular hydrogen average (CODATA): Muonic hydrogen (CREMA coll.): Regular H (2S → 4P, CREMA coll.): Regular H (1S → 3S, LKB, Paris):

0.8751 ± 0.0061 fm 0.8409 ± 0.0004 fm 0.8335 ± 0.0095 fm 0.877 ± 0.013 fm

Regular H-spectr. (2S 2P, York Univ. Canada, Just published in Science)

So, how do we resolve this puzzle?

A New ep Scattering Experiment?

A 1% level *Rp* measurements requires

- Q^2 down to 10^{-4} GeV² level or lower
- Measurements over wide enough Q² range for a fit
- ~< 0.5% accuracy in absolute cross section
- ~< 0.2 mrad in scattering angle determination

These conditions are VERY difficult to achieve with the standard methods used for *ep* scattering experiments

Difficulties with traditional ep Scattering Experiments

Practically all *ep*-scattering experiments have been performed with magnetic spectrometers and LH₂ targets.

- > many experimental settings to cover the Q² range!
 - > angle (Θ_e) , energies (E')
- > limitation on minimum Q²: 10^{-3} GeV/C²

The Mainz magnetic spectrometers ^{on:}

limitation on minimum Q²: 10⁻³ GeV/C² min. scattering angle: $\theta_e \approx 5^0$ beam energies: ~ 0.1 ÷1 GeV

Jlab Hall A HRS

A New ep Scattering Experiment?

A New ep Scattering Experiment?

limitation on absolute cross sections $(d\sigma/d\Omega): \sim 2 \div 3\%$

- statistics is not a problem (<0.2%)</p>
- > control of systematic errors???
- beam flux, target thickness, windows,
- acceptances, detection efficiencies,

A new high precision measurement requires a new experimental method.

The PRad Experimental Approach

PRad initial goals:

- > large Q² range in one experimental setting
- > reach to very low Q^2 range (~ 10^{-4} GeV/C^2)
- reach to sub-percent precision in cross section

PRad suggested solutions

use high resolution high acceptance calorimeter:

- ✓ reach smaller scattering angles: ($\theta_e = 0.7^0 7.0^0$): (Q² = 2x10⁻⁴ ÷ 6x10⁻²) GeV/c²;
- \checkmark large Q² range in one experimental setting!;

PRad Experimental Apparatus: GEM coordinate detectors

- Two large area GEM detectors (largest GEM detectors in the world at the time)
- Small overlap region in the middle
- Excellent position resolution (72 μm)
- Improve position resolution of the setup by > 20 times
- Large improvements in Q² determination

Our setup also allowed simultaneous detection of $ee \rightarrow ee$ Moller scattering (best known control of systematics).

 $ee \rightarrow ee$ Moller scattering cross section is known with very high accuracy from QED

PRad data

Cluster energy E' vs. scattering angle θ (2.2GeV)

Windowless Gas Flow Target

e-beam

- use high density windowless H_2 gas flow target:
 - beam background under control;
 - minimize experimental background.
- 8 cm dia x 4 cm long target cell
- 2 mm holes open at front and back kapton foils, allows beam to pass through
- Areal density: 1.8x10⁺¹⁸ H atoms/cm²
 - cell pressure: 471 mtorr
 - chamber pressure: 2.34 mtorr
 - cell vs. chamber pressures: 200:1 was reached.
- Gas temperature: 19.5 K

Rad Setup (Side View)

Gas IN, 25 K

40 mm

Gas OUT

Gas OUT

PRad experiment was carried out at Jefferson lab, located in Virginia

PRad was one of the first experiments to run at Jefferson lab after its major upgrade

PRad Experimental in Hall B

on Lab

PRad Experimental Setup in Hall B at JLab (schematics)

- Main detector elements:
 - \succ windowless H₂ gas flow target
 - PrimEx HyCal calorimeter

PRad experimental data taking May/June 2016: Two beam energies 1.1 GeV and 2.2

- vacuum box with one thin window at HyCal end
- X,Y GEM detectors on front of HyCal

- Beam line equipment:
 - standard beam line elements (0.1 50 nA)
 - photon tagger for HyCal calibration
 - collimator box (6.4 mm collimator for photon beam, 12.7 mm for e⁻ beam halo "cleanup")
 - > Harp 2H00
 - pipe connecting Vacuum Window through HyCal

Detector Position Calibration

- Engineering survey, done before the experiment.
- Detector offsets and z position from double-arm Moller events:
 - co-planarity to determine offsets;
 - Møller kinematics to determine detector z position (cross check surveyed data);
 - offset with ~ $50 \mu m$ and z with ~ 1 mm precision;

Recent Developments in Fitting Procedures

 X. Yan, D.W. Higinbotham, D. Dutta et al. *"Robust extraction of the proton charge radius from*

electron-proton scattering data" Published in: PRC 98, 2, 025204, 2018

- The input form factors (with known Rp) are used to generate pseudodata with fluctuations mimicking the binning and random uncertainty of a set of real data.
- All combinations of input functions and fit functions can then be tested repeatedly against regenerated pseudodata.
- Since the input radius is known, this allows us to find fitting functions that are robust for proton radius extractions in an objective fashion.
- we find that a two-parameter rational function, a two-parameter continued fraction, and the second-order polynomial expansion of z can extract the input radius regardless of the input charge form factor function that is used.

$$f_{\text{rational}}(Q^2) = p_0 G_E(Q^2) = p_0 \frac{1 + \sum_{i=1}^{M} p_i^{(a)} Q^{2i}}{1 + \sum_{j=1}^{M} p_j^{(b)} Q^{2j}},$$

Proton Electric Form Factor with Recent Models

Plots courtesy of Weizhi Xiong

PRad result from Duke analysis

PRad result from UVa analysis courtesy of Xinzhan Bai

<u>Prad result from Duke:</u> R_p = 0.831 ± 0.007 (stat.) ± 0.012 (syst.) fm <u>Prad result from UVa :</u>

 $R_p = 0.833 \pm 0.007 \text{ (stat.)} \pm 0.012 \text{ (syst.) fm}$

courtesy of Xinzhan Bai

PRad result: UVa analysis compared to Duke analysis.

<u>Prad result from Duke:</u> R_p = 0.831 ± 0.007 (stat.) ± 0.012 (syst.) fm <u>Prad result from UVa :</u>

R_p = 0.833 ± 0.007 (stat.) ± 0.012 (syst.) fm

Systematic Uncertainties on Rp (Preliminary)

Showing only major items

ltem	R _p uncertainty (fm)	n ₁ uncertainty (1GeV)	n ₂ uncertainty (2GeV)
Event selection	(0.0052)0.0092	(0.0002)0.0008	(0.0005)0.0011
Acceptance	(0.0024)0.0054	(0.0001)0.0001	(0.0001)0.0001
Beam background	(0.0038)0.0039	(0.0017)0.0020	(0.0003)0.0003
Detector efficiency	(0.0038)0.0045	(0.0001)0.0001	(0.0001)0.0001
Beam energy	(0.0022)0.0084	(0.0001)0.0001	(0.0002)0.0003
HyCal response	(0.0020)0.0032	(0.0000)0.0000	(0.0000)0.0001
Inelastic ep	(0.0009)0.0051	(0.0000)0.0001	(0.0000)0.0000
Radiative corrections	(0.0070)0.0070	(0.0011)0.0009	(0.0011)0.0009
Total	(0.0109)0.0175	(0.0020)0.0023	(0.0013)0.0015

(Current numbers in brackets)

Proton Radius from PRad

<u>Prad result:</u> R_p = 0.831 ± 0.007 (stat.) ± 0.012 (syst.) fm

Nature paper in print: will come out on Nov 7

What's Next?

Several other experiments around the world.

- \square μP scattering: MUSE at PSI
- ProRad at Grenoble
- ULQ2 at Tokohu
- □ ISR measurement at MESA @ Mainz
- DRad and an even more precise PRad

MUSE @ PSI

Paul Scherrer Institute π M1 Beam

- 590 MeV proton beam, 2.2mA, 1.3MW beam, 50.6MHz RF frequency
- World's most powerful proton beam
- Converted to e^{\pm} , μ^{\pm} , π^{\pm} in piM1 beamline
- Separate out particle species by timing relative to beam RF
- Cut as many pions as possible, trigger on e^{\pm} , μ^{\pm}

MUSE Experiment

- Low beam flux. → Large angle, non-magnetic detectors.
- ◆ Secondary beam. → Tracking of beam particles to target.
- Mixed beam. \rightarrow Identification of beam particle in trigger.

MUSE expected results

MUSE expected results

- Absolute radius extraction uncertainties similar to previous experiments
- However, common uncertainties cancel

ш ... Sick(2003) 11 11 11 11 Bernauer(2010) Zhan(2010) CODATA Pohl PSI: e-p PSI: e+p PSI: $\mu - p$ PSI: $\mu + p$ 0.82 0.84 0.86 0.88 0.90 RMS charge radius [fm] Mainz ISR

- Use initial state radiation to reduce effective beam energy
- Have to subtract FSR

Jan Bernauer

Mainz ISR

- Result from the pilot measurement: $R_p = 0.810 \pm 0.035$ (stat.) ± 0.074 (syst.) fm
- Not competitive
- New measurement planed with MESA with the Jet target

Mainz ISR

- For Mainz data, systematic errors dominate
 - Background from target walls
 - Acceptance correction for extended target
- Eliminate with jet target
 - o point-like
 - no walls
 - but less density
- Rinse, repeat with D, 3 He, 4 He, ...

Jan Bernauer

Platform for Research and Applications with Electrons: ProRad

Details from Eric Voutier LPSC, Grenoble (France).

Bi-national ANR proposal with Francfort University submitted.

Droplet Sream

- New accelerator to be built in France,
- Beginning measurement 2020
- Measurements in unexplored Q²-range

→1.5×10-5 - 3×10-4 (GeV/c2)2

- Constrain Q²-dependence of G_E and extrapolation to zero
- Non-magnetic spectrometer, frozen hydrogen wire / film target

ULQ² @ Sendai

ULQ² collaboration (Ultra-Low Q²)

Tohoku Univ.

Sendai

- 1) elastic e+p scattering at ultra-low Q² region
- 2) $G_E(Q^2)$ at $0.0003 \le Q^2 \le 0.008$ (GeV/c)²
- 3) G_E is extracted by Rosenbluth separation
- 4) Absolute cross section measurement

relative to ¹²C(e,e)¹²C : sys. err. ~3x10⁻³

- 5) Ee = 20 60 MeV, θ = 30 150°
- 6) the new beam line, and spectrometer are under construction
- 7) the experiments will start in 2019

PRad Nature publication will appear on Nov 7.

A small proton charge radius from electronproton scattering experiments

Graduate students:

Chao Peng (Duke) Weizhi Xiong (Duke) Li Ye (MSU) Xinzhan Bai (Uva) Abhisek Karki (MSU)

<u>Postdocs:</u>

Q2

Q3

Q4

Q5

Q6

Chao Gu (Duke) Xuefei Yan (Duke) Mehdi Meziane (Duke) Zhihong Ye (Duke) Maxime Lavilain (NC A&T) Krishna Adhikari (MSU) Rupesh Silwal (MIT)

W. Xiong¹, A. Gasparian^{2*}, H. Gao¹, D. Dutta^{3*}, M. Khandaker⁴, N. Liyanage⁵, E. Pasyuk⁶, C. Peng¹, X. Bai³, L. Ye³, K. Gnanvo⁵, C. Gu¹, M. Levillain², X. Yan¹, D. W. Higinbotham⁶, M. Meziane¹, Z. Ye^{1,7}, K. Adhikari³, B. Aljawrneh², H. Bhatt³, D. Bhetuwal³, J. Brock⁶, V. Burkert⁶, C. Carlin⁶, A. Deur⁶, D. Di⁵, J. Dunne³, P. Ekanayaka³, L. El-Fassi³, B. Emmich³, L. Gan⁸, O. Glamazdin⁹, M. L. Kabir³, A. Karki³, C. Keith⁶, S. Kowalski¹⁰, V. Lagerquist¹¹, I. Larin^{12,13}, T. Liu¹, A. Liyanage¹⁴, J. Maxwell⁶, D. Meekins⁶, S. J. Nazeer¹⁴, V. Nelyubin⁵, H. Nguyen⁵, R. Pedroni², C. Perdrisat¹⁵, J. Pierce⁶, V. Punjabi¹⁶, M. Shabestari³, A. Shahinyan¹⁷, R. Silwal¹⁰, S. Stepanyan⁶, A. Subedi³, V. V. Tarasov¹², N. Ton⁵, Y. Zhang¹ & Z. W. Zhao¹

Elastic electron-proton scattering (e-p) and the spectroscopy of hydrogen atoms are the two methods traditionally used to determine the proton charge radius, $r_{\rm p}$. In 2010, a new method using muonic hydrogen atoms¹ found a substantial discrepancy compared with previous results², which became known as the 'proton radius puzzle'. Despite experimental and theoretical efforts, the puzzle remains unresolved. In fact, there is a discrepancy between the two most recent spectroscopic measurements conducted on ordinary hydrogen^{3,4}. Here we report on the proton charge radius experiment at Jefferson Lab (PRad), a high-precision e-p experiment that was established after the discrepancy was identified. We used a magnetic-spectrometerfree method along with a windowless hydrogen gas target, which overcame several limitations of previous e-p experiments and enabled measurements at very small forward-scattering angles. Our result, $r_{\rm p} = 0.831 \pm 0.007_{\rm star} \pm 0.012_{\rm syst}$ femtometres, is smaller than the most recent high-precision e-p measurement² and 2.7 standard deviations smaller than the average of all e-p experiment results⁶. The smaller r_p we have now measured supports the value found by two previous muonic hydrogen experiments⁵⁷. In addition, our finding agrees with the revised value (announced in 2018) for the Rydberg constant⁸-one of the most accurately evaluated fundamental constants in physics.

The proton is the dominant ingredient of visible matter in the Universe. Consequently, determining the proton's basic properties-such as its root-mean-square charge radius, $r_{\rm p}$ -is of interest in its own right. Accurate knowledge of $r_{\rm p}$ is also important for the precise determination of other fundamental constants, such as the Rydberg constant $(R_{m})^{2}$. The value of $r_{\rm p}$ is also required for precise calculations of the energy levels and transition energies of the hydrogen atom-for example, the Lamb shift. In muonic hydrogen (µH atoms), in which the electron in the H atom is replaced by a 'heavier electron' (a muon), the extended proton charge distribution changes the Lamb shift by as much as¹2%. The first-principles calculation of $r_{\rm p}$ from the accepted theory of the strong interaction (quantum chromodynamics, QCD), is notoriously challenging and currently cannot reach the accuracy demanded by experiments, but lattice QCD calculations are on the cusp of becoming precise enough to be tested experimentally⁹. Therefore, the precise measurement of $r_{\rm p}$ is critical not only for addressing the proton radius puzzle but also

Article

https://doi.org/10.1038/s41586-019-1721-2

Received: 17 June 2019

Accepted: 19 September 2019

Published online: xx xx xxxx

important for determining certain fundamental constants of physics and testing lattice QCD.

Prior to 2010 the two methods used to measure r_p were ep \rightarrow ep elastic scattering measurements, in which the slope of the extracted proton (p) electric (E) form factor, G_E^p , as the four-momentum transfer squared (Q^2) approaches zero is proportional to r_p^2 ; and Lamb shift (spectroscopy) measurements of ordinary H atoms, which, along with state-of-the-art calculations, can be used to determine r_p . Although the e-p results can be somewhat less precise than the spectroscopy results, until 2010 the values of r_p obtained from these two methods^{2,5} mostly agreed with each other¹⁰. Since that year, two new results based on Lamb shift measurements in μ H were reported⁵⁷. The Lamb shift in μ H is several million times more sensitive to r_p because the muon in a μ H atom. To the surprise of both the nuclear and atomic physics communities, the two μ H results^{1,7}, displaying unprecedented precision with an estimated error

¹Duke University and Triangle Universities Nuclear Laboratory, Durham, NC, USA. ²North Carolina A&T State University, Greensboro, NC, USA. ³Mississippi State University, Mississippi State, MS, USA. ⁴Idaho State University, Pocatello, ID, USA.⁸University of Virginia, Charlottesville, VA, USA.⁶Thomas Jefferson National Accelerator Facility, Newport News, VA, USA. ²Argonne National Lab, Lemont, IL, USA.⁸University of North Carolina, Wilmington, NC, USA.⁸ Wilmington, NC, USA.⁹ Mississippi State, NS, Wilmington, NS, Wilmington

67

Summary

- PRad was uniquely designed and performed in May/June of 2016 to address the "Proton Radius Puzzle":
 - data in a large Q² range have been recorded with the same experimental settings, [2x10⁻⁴ ÷ 6x10⁻²] GeV/C².
 - lowest Q² data set (~10⁻⁴ GeV/C²) has been collected for the first time in ep-scattering experiments;
 - simultaneous measurement of the Moller and Mott scattering processes has been demonstrated to control systematic uncertainties.
- The final result from the PRad experiment is: R_p = 0.831 ± 0.007 (stat.) ± 0.012 (syst.) fm
- □ The article with the Final result will appear online in a few days.
- Stay tuned for PRad-II and DRad

Background Subtraction

- Runs with different target condition taken for background subtraction and studies for the systematic uncertainty
- Developed simulation program for target density (COMSOL finite element analysis)

Background Subtraction

- ep background rate ~ 10% at forward angle (<1.3 deg, dominated by upstream collimator), less than 2% otherwise
- ee background rate ~ 0.8% at all angles

Elastic cut and inelastic contribution

- Using Christy 2018 empirical fit to study inelastic ep contribution
- Good agreement between data and simulation
- Negligible for the PbWO₄ region (<3.5°), less than 0.2%(2.0%) for 1.1GeV(2.2GeV) in the Lead glass region

HyCal and GEMs on the beamline

beam view

downstream view

Vacuum chamber with one thin window

two stage, 5 m long vacuum box

1.7 m dia, 2 mm thick Al window

Extraction of ep Elastic Scattering Cross Section

 To reduce the systematic uncertainty, the ep cross section is normalized to the Møller cross section:

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{ep} = \left[\frac{N_{\mathrm{exp}}(ep \to ep \text{ in } \theta_i \pm \Delta \theta_i)}{N_{\mathrm{exp}}(ee \to ee)} \cdot \frac{\varepsilon_{\mathrm{geom}}^{ee}}{\varepsilon_{\mathrm{geom}}^{ep}} \cdot \frac{\varepsilon_{\mathrm{det}}^{ee}}{\varepsilon_{\mathrm{det}}^{ep}}\right] \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{ee}$$

- Event generators for unpolarized elastic ep and Møller scatterings have been developed based on complete calculations of radiative corrections
 - 1. A. V. Gramolin et al., J. Phys. G Nucl. Part. Phys. 41(2014)115001
 - 2. I. Akushevich et al., Eur. Phys. J. A 51(2015)1 (fully beyond ultra relativistic approximation)
- A Geant4 simulation package is used to study the radiative effects:

$$\sigma_{ep}^{Born(exp)} = \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{exp} / \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{sim} \cdot \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{Born(model)} \cdot \sigma_{ee}^{Born(model)}$$

Iterative procedure applied for radiative correction

Normalized super ratio by quadrants

1GeV elasticity cut sensitivity

2GeV elasticity cut sensitivity

Radiative corrections

ep cross section / ee cross section

- Event generators for *ep* and *ee* elastic scattering developed based on complete calculation of radiative correction beyond URA¹
- Cross checked with results from second generator²
- Include hard emission radiative photons for full correction of radiative effect with HyCal
- Include effect from two photon exchange³

Elastic ep→ep Cross Sections, 1.1 GeV (Preliminary)

- □ Differential cross section vs. Q^2 , with 1.1 GeV data (preliminary).
- □ Statistical uncertainty at this stage: ~0.2% per point.
- Systematic uncertainties at current stage: 0.3% ~0.6% (shown as shadow area).

ep elastic scattering cross section

Elastic ep→ep Cross Sections, 2.2 GeV (Preliminary)

- \Box Differential cross section vs. Q^2 , with 2.2 GeV data.
- □ Statistical uncertainty at this stage: ~0.18% , per point.
- Systematic uncertainties at current stage: 0.3% ~ 1.3% (shown as shadow area).

ep elastic scattering cross section

GE compare

- 1.1 GeV data fit to: $n_1 f(Q^2)$
- 2.2 GeV data fit to: $n_2 f(Q^2)$

$$f(Q^2) = \frac{1 + p_1 Q^2}{1 + p_2 Q^2}$$

 $G'_E = G_E/n$

- Fit 1.1 GeV data only:
- $R_p = 0.845802 \ fm \pm 0.0248939 \ fm;$
- Fit 2.2 GeV data only:
- Fit 1.1GeV and 2.2GeV data:
- $R_p = 0.82863 \ fm \pm 0.00529776 \ fm;$
- data: $R_p = 0.833086 \ fm \pm 0.0070957 \ fm;$

 $n_1 = 0.999835 \pm 0.000226$ $n_2 = 0.995738 \pm 0.000151314$ $n_1 = 0.99694 \pm 0.00019$ $n_2 = 0.995816 \pm 0.00017$