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¢ Introduction of the electromagnetic form factors

e Measurements of the electromagnetic form factors of nucleon:
e Proton form factors

e Summary

e Neutron form factors = Results are shown for the first time.
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® The Form factors (FFs) characterize the internal structure and dynamics of the nucleon.

o
-g € (k) N(p) ® Scattering amplitude in Born approximation:
b=1 1 _ _
§ M= P [eU(k2)vuu(ki)] [e U(Pz)r”(Pth)U(m)}
- o >
Nucleon EM 4-current: Ji
® The electromagnetic vertex of nucleon: N, 2
eet(k,) io’“q” Fl (q“): Dirac FF.
N, 2 N, 2
M =~+"F(q°) + =—F,(a°) FN(g%): Pauli FF.
Annihilation 2m
® Combination of Pauli and Dirac FFs leads to the so called Sachs FFs:
Ge= Fi(q°) + (¢°/4M*)F2(q®) Gu = Fi(d’) + Fa(d®)
How experimentally the Form Factors are determined?
5 Elastic Scattering Annihilation %
[ T <0 >0 E.
[ space like timelike G am?) =G, (am9) §
- R — 2
£ 76 5 4 3 2 1 o 1/2 3 a_5 6.7 S
£ q*[(GeV /c)?] w
5 Er unphysical region £
(=]
L ro Glai=0i=1 Bia=0=278 <
Gelq'=0) =0 Gh(a’= 0)=-191
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Direct Scan Method:

Initial State Radiation Method:

® Beam energy is discrete.

® |uminosity is relatively small.

doyyy _ &CB T w2 5
(W) =S [IGUI°(1 + cos”0)
1
+216M P - cosza)]
-

® g2 is single at each beam energy.

s'=x = 2E,/\/s
® Beam energy is fixed.

® Luminosity is relatively high.

doyg 1
Y 2 (2
( dq?do ) TP WA, x Ox)owila’)

2_92 2 2
%)

W(qZ,X, 0) =

X

® g2 is continuous from threshold to s.
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Status of the Proton Form Factors
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Existing results for the proton form factors before the contribution of BESIII

® The proton form factor ratio |Gg|/|Gp| had been measured by 2 experiments only.
® The results from the two experiments are inconsistent. Which one is correct?.

® Due to the low statistics, only the effective form factor is measured in most experiments.
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BESIII results for the ete™ — pp cross section and effective form factors

® Direct scan method:

e 2012 data, 156.7 pb~1, 12 c.m energies, Phys. Rev. D 91, 112004 (2015)
e 2015 data, 668.5 pb~1, 22 c.m energies, arXiv:1905.09001 = most precise results.

® |[nitial state radiation method:

e Untagged analysis: data at [3.773 - 4.60 GeV], 7.4 pb—1, Phys. Rev. D 99, 092002.

e Tagged analysis: data at [3.773 - 4.60 GeV], 7.4 pb~1, under review.
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BESIII results for the ete™ — pp cross section and effective form factors

® The BESIII results are consistent with the BaBar measurement.

® The precision of the BESIII results is significantly improved.
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Status of the Neutron Form Factors

New results
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® The electric and magnetic FFs had been measured in the SL region while not in the TL region.

Space-Like region Time-Like region
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Motivation 1

® For a complete understanding of the nucleon structure:

»> The electromagnetic form factors of the neutron in the Time-Like region should be measured.
® The only available results for neutron are the effective form factor but with poor precision.
® The results from FENICE experiment show an unexpected behavior (twice as large as for the proton).

® Many models exist to describe the neutron structure. Which is the most precise one?

® The pQCD predicts asymptotic behavior for the Space-Like (SL) and Time-Like (TL) results:

» Can we provide the necessary results for a test?

Motivation 2

® Large data sets with a total luminosity of 651 pb~" in the range [2.0, 3.08] GeV have been used.
® The neutron form factors GZ and Gy, have been determined for the first time.

® Details about the analysis can be found in the backup and in the poster session by Samer Ahmed.
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BESIII Scan - this work
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SND (2012)
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Results of the eTe
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BESIII Scan - this work
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~— — nn Born Cross Section:

The Born cross sections are determined in a wide range of /s with unprecedented precisions.
The best precision among all analyzed /s is achieved at \/s= 2.396 GeV to be 7.3%.
The cross section at v/s= 2.0 GeV is in agreement with the FENICE and the SND results.

The cross section at /s= 2.396 GeV differs by around 20 with the FENICE result.
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Comparison of the ete™ — nn and ete™ — pp Cross Sections:

® The Born cross sections of the ni and pp processes are roughly similar at /s > 2.4 GeV.

) +
® The ratio R,,= o,

e
e /o5, TP shows an interesting behaviour over the range of \/s:
> The pQCD predicts the R,, < 1. The ratio is predicted as R,, =~ |qd/qu|2 ~ 0.25 by [{].

> The BESIII results for the cross section ratio don’t agree with the FENICE results (R,,>1).

[f] V. L. Chernyak and A. R. Zhitnitsky, Phys. Rept. 112, 173 (1984). (=] = =
Samer Ahmed Electromagnetic Form Factors of Neutron




¢ BESIII nf this work
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Results for the Effective Form Factor of Baryon:

® The results for the effective form factor of neutron are compared to those of the other baryons.

® The results for the neutron effective form factor show step behavior in the range [0.3 - 0.6] GeV.

oy <3 =» «=» = Wac
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® An oscillation in the effective form factor of proton is observed by BaBar and then confirmed by BESIII.
® What about the effective form factor of the neutron? Does an oscillation exist?

® The normalisation A is extracted by
a fit to the effective FF of the neutron:

0.1
£ S o G (e BESHImthis work
008l Global ¥ 10.0/37 @Q,(\ = BESIIpp(2019) 1
2 r Bamping Newto lge&(eev) BESIIl ppy, ., (2019) 1
Fosc = |GJy/ ('-7 )| — Gp(q ): q=s L Shared Frequ ? 6% 0.1(GevY BaBar ppy . (2013) ]
0.06 Phase- s{\ +10.8 (degree) ISR —
3 3]
1 1 £ —
2 a ]
Go(q) =A- YR a2 O ]
a- o.71(GeV)7) a+ ;g) q.l:,: 7
c o -
(D '4-:

A = 4.86+0.09

Aexp( B)cos(C + D)

T

2 25
Bl (GeVic)

|

3.5

L

3

T

» An oscillation behavior is observed in the effective form factor of the neutron.

P The oscillation is observed with a relative phase

|p| is the relative momentum of the final state particles.

shift of ~235°+11° compare to that for the proton.

=) = =

=
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Results for the Neutron Time-like Form Factors at BESIII:

® The neutron form factor ratio R.,, has been determined for the first time in the TL region.

® The uncertainty of the extracted results for the form factor ratio is dominated by the statistical one.

® The statistical precision of the R.,, is 35.7% and 52.2% at /s= 2.125 and /s= 2.394 GeV.

Black and grey colors in the left plot are statistical and systematical uncertainties while red is the combined uncertainties.
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Results for the Magnetic Form Factor of the Neutron (|Gul|):

® The magnetic form factor has been determined for the first time in the TL region at \/s>2.0 GeV.
® The uncertainties of the magnetic form factor results are dominated by the statistical one.

® The statistical precision of the |G},| is 9.5% and 7.1% at /s= 2.125 and /s= 2.394 GeV.

Black and grey colors are statistical and systematical uncertainties while red is the combined uncertainties. ) = =
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Ml
M

Magnetic Form Factor IG

0.7

e BESIII nn this work
FENICE (1994)
—— Modified Dipole prediction - Phys. Lett. B 504 (2001)
—— pQCD prediction - Phys. Rev. Lett. 79 (1997).
~—— DR prediction from Mainz Model - Phys. Lett. B 385 (1996)
~——— modified VMD IJL prediction - Phys. Rev. C 69 (2004)

N

Comparison of the Magnetic Form Factor Results to the Theoretical Predictions:

® The only existing results for |Gy,| are from FENICE, they were determined under the hypothesis |GZ|= 0.

® The |Gy,| results from this analysis are well described by the Mainz model based on dispersion relations.

[} = =
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Neutron and Proton Magnetic Form Factors in the SL and TL Regions:

® The pQCD predicts an asymptotic behavior of the form factors in the SL and TL regions:
® At high ¢, the pQCD predicts Gy(SL) = Gum(TL) for neutron and proton form factors.

® The neutron and proton form factors in the TL region are larger than those in the SL region.

The representation of y-axis shows the deviation from the dipole behavior (1/[1 — q2/0471GeV2)2].
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® The BESIII experiment provides an excellent opportunity to measure the nucleon FFs.

® The cross section of the et e~ — pp process has been measured in a wide range of q2.

® The proton form factors (Gy; and Ren,) are measured with unprecedented precision.

® The cross section of the et e~ —sni process has been determined in a wide range of 2.
® The results for the cross section of the ete~ — ni process are significantly improved.
® The effective form factor of the neutron is determined at 18 c.m. energies.

® An oscillation behaviour in the effective form factor of the neutron is observed.

® The results for the neutron FFs (Ren and Gy) have been determined for the first time.
® A comparison between the results from this work and several predications is performed.

® The results for the time-like neutron form factors are presented for the first time.

Thank you
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Analysis Strategy for the Extraction of Neutron Form Factors
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Analysis Strategy
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Analysis Strategy
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Analysis Strategy
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® The signal yields in the 3 categories are extracted by the fit where the variables used for the fit:

Category A: Category B: Category C:
(EMC+TOF)a+(TOF), (EMC+TOF)z+(EMC), (EMCQC)7+(EMCQ),
———
AT, =T - T8 —T,
" ToF2 ™ o " 0, - = arccos [ VEMCL " VEMC2
_ L g VE— = v, V,
TH*B_C’B*A% [Vemc || Vemca|
Category A Category B Category C
80 T T T T T T T 3 T T T T T
z 1 EIS T
= 3 nsigl_1= 159+ 13 L
Q EP EE: e
E| 4
§- 3 uz\; 40 3,0
34 2L
gw, 3 E 30 g L
- ERE [
g E E 20 S
@ 3 10 =
4 e e
R 950155 160 165 170 175 18 S0 155 160 165 170 175 180
AT =T TT, (ns) Opening angle @ 2.396 GeV Opening angle @ 2.396 GeV
» Signal PDF: MC shape. P Signal PDF: Crystal-ball function. P Signal PDF: Crystal-ball function.
» Background PDF: data. » Background PDF: three-order » Background PDF: Chebychev
polynomial function. polynomial function of third order.
o = - = T wae
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O Born

® Experimentally, the Born cross section of the ete

— nn process is determined via
Ndata

X Cdm X Ctrg X (1 + 6) X [:Int
1 + &: Radiative correction and vacuum polarisation (1 + &)

Ngata: Number of selected nii data events, C 4, data/MC efficiency correction Ctrg trigger efficiency correction

® Theoretically, the Born cross section of the ete

mc MC Efficiency, Llnt Luminosity
O Born

— ni is expressed in this form
4oy 2
= 6w + 2 el

® The effective form factor is defined as a linear compination of Gg and Gy FFs which is
proportional to the square root of the nucleon pair production cross section

| Gerr| = ( 3¢ G
eff | — 5 2m2 Born
4ralf(1 +
Theoretical, | Gur 7 = [16w 17 + (232166 PI/[1 + 2] - = . . “ae
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Results of the eTe~ — nh Born Cross Section:

® The results from the three categories are in agreement within the error bars.

® The combined cross sections are determined via: )
1 1 1/Ao?
()t w==2% . i—ascC
>.,(/a0) >.,(1/a0)

o; and Ao; are the cross sections and their error bars, respectively.

OBORN = WaOA+Wgog+wcoc, Aogorn =

[} = =
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Born
dos

dN /dcost5

MC o Cam X Ct,g X (1 + 5) X Lint

® The Ren and |Gy | form factors can be extracted by fitting the efficiency corrected angular distribution
dcosOr =

2
= Ax |Gyl [
® R’ = |Gg/Gul| is the form factor ratio, A=

1- 00529,—,)]
_ 2#&25 .
4s

d ob B_om

bin=n
A % |G 1 R2,
dcosg_ Z/ X |Gy [(1 + cos”05) +
bin=1

is the normalisation factor
® [ntegration over bin width of the fit function is performed due to the large bin width

aM

n

( — cos? 9;,)]

® | stands for the three categories, i.e A, B and C

® The neutron form factors are extracted by performing a simultaneous fit to the angular
distributions from the three categories where the R., is shared

=] F = = DA
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e All expected sources of systematic uncertainties have been studied:

Cross Section and EFF:

Luminosity

All individual selection
criteria

Fit for signal yield
extraction (fit range,
signal and background
model)

Trigger efficiency
Radiative corrections
Iterative MC tuning

Form Factor Ratio
- Differential selection
- Differential signal yield

extraction (range, signal and

background model)
- Bin width
- Angular fit range

Magnetic Form Factor

- Differential selection

- Differential signal yield
extraction (range, signal
and background model)

- Luminosity

- Trigger efficiency

- Radiative corrections

- lterative MC tuning

® The results for the cross section, the form factor ratio and the magnetic form factor
are dominated by the statistical uncertainties.

m] = = =
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BESIII Experiment
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Beijing Electron Positron Collider BESIII detector

O O O O

o

RPC: 9

Sz

Electromagnetic Calorimeter
0¢/VE(%)=2.5% (1 GeV),
(Csl) 6,,(cm)=0.5-0.7 cm/VE

Symmetric e*e” collider

Beam energy: 1.0 - 2.3 GeV
Optimum energy: 1.89 GeV
Design luminosity: 103 cm !

Crossing angle: 22 mrad
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® Oscillation in the effective form factor is observed by BaBar and then confirmed by BESIII.

PRL114,232301- PRC93,035201 0.06
. @ o0t Q) 4 BESIII
03 04 1
o BaBar Data : o BABAR
002k
01— L
L . . ‘ o 0f
0.04 + ) r
- -0.02 -
Dooz_ + ++ + 00 :
+ 004
002 C Phys. Rev. D 99, 092002
004~ . ‘ ) -0.06_ P PP RN AR AT IS I
L 0 05 1 15 2 25 3 35
Fose(p) = Aexp(—Bp) cos(Cp + D) p (GeVie)

> A physical explanation could be due to a possible interference effect involving rescattering
processes at moderate kinetic energies of the outgoing hadrons (when the center-of-mass
of the produced hadrons are separated by 1 fm)

p is the three momentum of the proton in the frame of antiproton. [m] [l = =

DA
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o (2 Fi BE:
.8_ — Fit o BES 2 0_3 — Fit o S
= 1000 M BESII 2019 % FENICE = ! = BESII 2019 + FENICE
— e BESIII 2015 A E760 o“’ ® BESII2015 A E760
L”/ » BESIl(unTagged) © E835 e * BESIl(unTagged [ E835
I% % BaBar(Tagged) + PS170 4= BaBar(Tagged) + PS170
0 % BaBar(unTagged) « DM2 0.2 * CMD3 + DM2
* CMD3 ¥¥/ndf=0.5863 I %?/ndf=4.5104
500 T
0.1
0 N N N N N N N N 0 I L L L L L L n
2 2.5 3 2 25 3

{s[GeV] /s [GeV]

BESIII results for the ete™ — pp cross section and effective form factors
® Direct scan method:
e 2012 data, 156.7 pb—1, 12 c.m energies, Phys. Rev. D 91, 112004 (2015)

e 2015 data, 668.5 pb~1, 22 c.m energies, arXiv:1905.09001 = most precise results.
® |[nitial state radiation method:

e Untagged analysis: data at [3.773 - 4.60 GeV], 7.4 pb—1, Phys. Rev. D 99, 092002;
e Tagged analysis: data at [3.773 - 4.60 GeV], 7.4 pb™1, under review ;
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