

Study of hyperon form factor at BESIII

13th European Research Conference on Electromagnetic Interactions with Nucleons and Nuclei 27 October – 02 November 2019 Paphos, Cyprus

Yadi Wang (on behalf of BESIII) Helmholtz Institute Mainz, Johannes Gutenberg University Mainz

Outline

- Introduction
- Production and internal structures of hyperons:
 - $e^+e^- \rightarrow \Lambda \overline{\Lambda}$
 - $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$
- Summary

Baryon production from e^+e^- annihilation

S-wave:	C =	$\frac{\frac{\pi\alpha}{\beta}}{1-\exp\left(-\frac{\pi\alpha}{\beta}\right)} \xrightarrow{\beta \to 0} \frac{\pi\alpha}{\beta}$	
D-wave:	C =	1	

Analyticity $\rightarrow G_{S}(4M_{B}^{2}) \neq 0, G_{D}(4M_{B}^{2}) = 0$ Hence:

charged baryons σ should show a step
@ threshold:

 $1/\beta$ factor cancels the phase space β

• neutral baryons $\sigma \sim \beta \rightarrow 0$ @ threshold

- For $e^+e^- \rightarrow p\bar{p}$ close threshold, $\sigma \sim 850 \ pb \rightarrow |G_E^p(4M_p^2)| = |G_E^p(4M_p^2)| \sim 1, \ p\bar{p}$ pairs at threshold behave as pointlike fermions?
- For $e^+e^- \rightarrow n\bar{n}$ close threshold, $\sigma \neq 0$?
- Resonances, FSI or other effects on the mass spectrum of $B\overline{B}$?

Electromagnetic Form Factors (FF)

Hadrons are not point-like particles

- internal structure
- internal dynamics: $M_{hadron} \neq \Sigma m_{q-valence}$
- the vertex Γ_{μ} contains the unknown structure
- FFs parametrize structure and internal dynamics
- 2 FFs needed for S=½ baryons

- Time-like FF's are complex, $G_E = |G_E|e^{i\Phi_M}$, $G_M = |G_M|e^{i\Phi_M}$ Relative phase: $\Delta \Phi(q^2) = \Phi_E - \Phi_M$
- A non-zero phase has polarization effect on the Baryons, even for unpolarized initial state*: $P_y \propto \sin \Delta \Phi$
- Phase is **production related** and depends on q^2 .

Constraint 1: Phase result of interfering amplitudes (*e.g. s-* and *d* waves) $\rightarrow \Delta \Phi(q^2) = o$ at threshold

Constraint 2: Analyticity requires TL FF ~ SL FF as $|q^2| \rightarrow \infty **, ***$

 $\rightarrow \Delta \Phi(q^2) \rightarrow o \text{ as } |q^2| \rightarrow \infty$

 $\checkmark \Delta \Phi(q^2)$ cannot be measured for nucleon produced at BESIII (no detection of polarization).

*Nuovo Cim. A **109** (1996) 241. ** Theor. Mat. Fiz. **15** (1973) 332. *** Phys. Rev. Lett. 31 (1973) 1153.

Hyperons – key to the strong interaction

- Polarization experimentally accessible by the weak, parity violating. The angular distribution of daughter baryon from Hyperon weak decay is: $\frac{d\sigma}{d\Omega} \propto 1 + \alpha_{\Lambda} P_y \cdot \hat{q}$
 - α_{Λ} : asymmetry parameter
 - \hat{q} : unit vector along the daughter baryon in hyperon rest frame
- Systems with strangeness
 - − Scale: $m_s \approx 100$ MeV ~ $\Lambda_{\rm QCD} \approx 200$ MeV: Relevant degrees of freedom?
 - Probes QCD in the confinement domain.
- Systems with charm
 - Scale: $m_c \approx$ 1300 MeV: Quarks and gluons more relevant.
 - Probes QCD just below pQCD.

Example: Angular distribution of $\Lambda \rightarrow p\pi^{-}$ $I(\cos\theta_p) = N(1+\alpha_{\Lambda} P_{\Lambda} \cos\theta_p)$ $P_{\Lambda} = P_{\Lambda} (\cos\theta_{\Lambda})$: polarisation (production) α_{Λ} : asymmetry parameter (decay) With hyperon weak decay to B+P, the polarization of hyperon can be measured, so does the relative phase between G_E and G_M !

Status on hyperon FFs

7

Complete measurement of Λ EMFFs @ q=2.396 GeV An event of the reaction $e_{+}e_{-} \rightarrow \Lambda(\rightarrow p\pi_{-})\Lambda(\rightarrow p\pi_{+})$ is specified by the five Phys. Lett. B 772, 16 (2017) Phys. Rev. Lett. 123, 122003 (2019) dimensional vector $\xi = (\theta, \Omega_1, \Omega_2)$, the differential cross section is: scattering angle distribution of Λ $\mathscr{W}(\xi) = \mathscr{T}_0(\xi) + \eta \mathscr{T}_5(\xi)$ $-\alpha_{\Lambda}^{2}\left(\mathscr{T}_{1}(\xi)+\sqrt{1-\eta^{2}}\cos(\Delta\Phi)\mathscr{T}_{2}(\xi)+\eta\mathscr{T}_{6}(\xi)\right)$ the spin correlations between the two hyperons. $+\alpha_{\Lambda}\sqrt{1-\eta^2}\sin(\Delta\Phi)(\mathscr{T}_3(\xi)-\mathscr{T}_4(\xi)).$ \longrightarrow transverse polarization Py of the Λ and $\overline{\Lambda}$ (a) (b) $P_{y} = \frac{\sqrt{1 - \eta^{2} \sin \theta \cos \theta}}{1 + \eta \cos^{2} \theta} \sin(\Delta \Phi)$ 0.5 1.5 dơ/dcosθ (a.u.) $\alpha_{\Lambda}P_{\gamma}$ σ= 118.7±5.3(stat)±5.1(syst) pb $|G| = 0.123 \pm 0.003(\text{stat}) \pm 0.003(\text{syst})$ $R = |G_E/G_M| = 0.96 \pm 0.14(\text{stat}) \pm 0.02(\text{syst})$ $\Delta \Phi = 37^\circ \pm 12^\circ(\text{stat}) \pm 6^\circ(\text{syst})$ 0.5 -0.5 -0.5 0.5 0.5 0 -0.50 -1 cos θ cost

Non-zero phase means: not only the s-wave but also the d-wave amplitude contribute to the production interference between s-d waves results in a polarized final state.

The first complete hyperon EMFF measurement, and a milestone in the study of hyperon structure.

Measurement of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ @ q=2.2324 ~ 3.08 GeV

Phys. Rev. D 97, 032013 (2018)

- $\mathcal{L} = 40.5 \text{ pb}^{-1}$ @ 4 CM energies: 2.2324, 2.4, 2.8 and 3.08 GeV:
 - 2.2324 GeV is just 1 MeV above the $M_{\Lambda\bar{\Lambda}}$ threshold!
- σ and $|G_{eff}|$ near threshold and small PHSP
 - $\Lambda \to p\pi^-$, $\overline{\Lambda} \to \overline{p}\pi^+$: indirect search for the antiproton
 - $\Lambda \to X$, $\overline{\Lambda} \to \overline{n}\pi^0$: Λ inclusive decays, search for mono-energetic π^0
- For other energies, full reconstruction

No Coulomb effect for neutral baryons BUT unexpected rise at the threshold !!!

A possible resonance around $\overline{\Lambda}$ resonance?

Phys. Rev. D 100, 032009 (2019)

• Mass=2232±3.5 MeV, width=20 MeV

- the Λ_c weak decay allows for the experimental detection of $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$ with good efficiency even right at threshold
- single tag method: only one of the baryons is reconstructed
- 10 Cabibbo-favored + c.c. hadronic decay modes considered
- total cross section: weighted average over all the 20 decay modes
- very high precision achieved (1.3% @ 4.6 GeV)

\sqrt{s} (MeV)	$\mathcal{L}_{int} \ (pb^{-1})$	$f_{\rm ISR}$	σ (pb)
4574.5	47.67	0.45	$236 \pm 11 \pm 46$
4580.0	8.54	0.66	$207\pm17\pm13$
4590.0	8.16	0.71	$245\pm19\pm16$
4599.5	566.93	0.74	$237\pm3\pm15$

- $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$ behavior is similar to $e^+e^- \rightarrow p\overline{p}$: different with that from BELLE
- strong enhancement at thrensold followed by a plateau

•
$$\sigma(e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c) \sim \frac{\pi^2 \alpha^3}{2M_B} \sim 145 \text{ pb from}$$

pointlike assumption

$$e^+e^- \to \Lambda_c \overline{\Lambda}_c$$

PRL 120 (2018) 132001

- differential cross section, evaluated in the $\Lambda_c \overline{\Lambda}_c CM$, fitted by $1 + \alpha_{\Lambda_c} cos^2 \theta$
- $|G_E| / |G_M|$ extracted from the equation $|\frac{G_E}{G_M}|^2 (1 \beta^2) = (1 \alpha_{\Lambda_c})/(1 + \alpha_{\Lambda_c})$

- Measurement of the Born cross section at 4 energy points below 4.6 GeV with unprecedented statistical accuracy (~1.3% at 4.6 GeV)
- $|\mathbf{G}_{\mathbf{E}}| / |\mathbf{G}_{\mathbf{M}}|$ measured for the first time!
- more data needed @ 4.6 GeV by BESIII

Summary

- With the large data set, precise results on Hyperon FFs and the first full measurement of $e^+e^- \rightarrow \Lambda\overline{\Lambda}$ have been done.
 - $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ • $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$
- With more data sets in the future, more precise results are expected at BESIII.
 - More precise cross section line-shape
 - Test on threshold effect
 - Complete determination of $\rm G_{\rm E}$ and $\rm G_{\rm M}$
- Long time goal: to describe charge and magnetization densities for hyperons in the same way as for nucleons

Thanks for your attention!