Modified structure of protons and neutrons in correlated pairs

Axel Schmidt

George Washington University

October 30, 2019 EINN Conference, Paphos Cyprus

The EMC Effect: Nucleon structure changes in nuclei!

The EMC Effect: Nucleon structure changes in nuclei!

The EMC Effect: Nucleon structure changes in nuclei!

The EMC Effect grows with nuclear size.

"Isoscalar corrections" are applied to neutron-rich nuclei.

The EMC Effect correlates with short-range correlated pairs.

What if only SRC nucleons have significant modification?

In my talk today:

• The per-pair modification is universal.

- B. Schmookler et al., Nature 566 p. 354 (2019)
- The SRC-EMC hypothesis makes predictions for MARATHON.
 E. P. Segarra et al., arXiv:1908.02223 (2019)
- Direct tests with BAND and LAD experiments
 Recoil spectator tagging at Jefferson Lab

In my talk today:

• The per-pair modification is universal.

- B. Schmookler et al., Nature 566 p. 354 (2019)
- The SRC-EMC hypothesis makes predictions for MARATHON.
 - E. P. Segarra et al., arXiv:1908.02223 (2019)
- Direct tests with BAND and LAD experiments
 Recoil spectator tagging at Jefferson Lab

Two nucleons in close proximity with high relative momentum.

High-momentum tails

D. Nguyen et al., in preparation

Two nucleons in close proximity with high relative momentum.

Quasielastic kinematics

High-momentum tails

Two nucleons in close proximity with high relative momentum.

High-momentum tailsUniversal shape

Two nucleons in close proximity with high relative momentum.

- High-momentum tails
- Universal shape
- Correlated emission of partner

Two nucleons in close proximity with high relative momentum.

- High-momentum tails
- Universal shape
- Correlated emission of partner
- *np*-pairs dominant

M. Duer, A. Schmidt, J. R. Pybus et al., PRL (2019)

CLAS EG2: simultaneous SRC-EMC measurement

work by Barak Schmookler MIT PhD 2018

Liquid Hydrogen C, Al, Fe, or Pb

CLAS EG2 Experiment (2004)

- 5 GeV *e*⁻ beam
- Deuterium target AND C, Al, Fe, Pb
- Measured quark distributions and SRC pair density

We measured the EMC Effect and pair densities.

We measured the EMC Effect and pair densities.

We measured the EMC Effect and pair densities.

Barak's data show excellent agreement with previous EMC measurements.

The SRC-EMC hypothesis predicts "Universal Modification"

The modification of an SRC pair should be independent of nuclear structure.

Assume only np pairs

$$F_2^A = (Z - n_{SRC}^A)F_2^p + (N - n_{SRC}^A)F_2^n + n_{SRC}^A(F_2^{p*} + F_2^{n*})$$

Assume only np pairs

$$F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A(\Delta F_2^p + \Delta F_2^n)$$

Assume only np pairs

$$F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A(\Delta F_2^p + \Delta F_2^n)$$

$$F_2^n = F_2^d - F_2^p - n_{\mathsf{SRC}}^d (\Delta F_2^p + \Delta F_2^n)$$

$$\frac{n_{\rm src}^d (\Delta F_2^p + \Delta F_2^n)}{F_2^d} = \left[R_{\rm EMC} - \frac{2(Z - N)}{A} \frac{F_2^p}{F_2^d} - \frac{2N}{A} \right] / \left[a_2 - 2N/A \right]$$

$$\frac{n_{\rm src}^d (\Delta F_2^p + \Delta F_2^n)}{F_2^d} = \left[R_{\rm EMC} - \frac{2(Z - N)}{A} \frac{F_2^p}{F_2^d} - \frac{2N}{A} \right] / \left[a_2 - 2N/A \right]$$

$$\frac{n_{\rm src}^d(\Delta F_2^p + \Delta F_2^n)}{F_2^d} = \left[R_{\rm EMC} - \frac{2(Z-N)}{A} \frac{F_2^p}{F_2^d} - \frac{2N}{A} \right] / \left[a_2 - 2N/A \right]$$

$$\frac{n_{\rm src}^d(\Delta F_2^P + \Delta F_2^n)}{F_2^d} = \left[R_{\rm EMC} - \frac{2(Z - N)}{A} \frac{F_2^P}{F_2^d} - \frac{2N}{A} \right] / \left[a_2 - 2N/A \right]$$

0.2

0

0.2 0.4

х_В

0.8

0.4

₽^D

× ≥lv

0

х

EMC Data vary significantly by nucleus.

The modification of SRC pairs is universal!

In my talk today:

• The per-pair modification is universal.

- B. Schmookler et al., Nature 566 p. 354 (2019)
- The SRC-EMC hypothesis makes predictions for MARATHON.
 E. P. Segarra et al., arXiv:1908.02223 (2019)
- Direct tests with BAND and LAD experiments
 Recoil spectator tagging at Jefferson Lab

We extracted the universal modification from EMC and SRC data.

work by Efrain Segarra (MIT) arXiv:1908.02223

MARATHON made a once-in-a-generation DIS measurement on tritium.

SRC-EMC model makes predictions for the A = 3 EMC Effect.

(predictions agree with MARATHON prelim. results.)

MARATHON aims to extract F_2^n/F_2^p at large x.

Using isospin symmetry:

$$\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} - \frac{F_2^{3\,\mathrm{He}}}{F_2^{3\,\mathrm{H}}}}{2\frac{F_2^{3\,\mathrm{He}}}{F_2^{3\,\mathrm{H}}} - \mathcal{R}}$$

Requires the ratio of EMC Effects:

$$\mathcal{R} \equiv \frac{F_2^{^{3}\text{He}}}{2F_2^p + F_2^n} / \frac{F_2^{^{3}\text{H}}}{F_2^p + 2F_2^n}$$

Hopefully model dependence of \mathcal{R} is small.

Hopefully model dependence of \mathcal{R} is small.

Hopefully model dependence of \mathcal{R} is small.

Iterative procedure: use measured F_2^n to recalculate \mathcal{R}

The EMC-SRC Model predicts leveling at $F_2^n/F_2^p \approx 0.47$.

Reasonable assumptions can lead to wide variation in \mathcal{R} .

... and care must be taken in extracting F_2^n .

41

... and care must be taken in extracting F_2^n .

More robust: simultaneous analysis of H, d, tritium, helium-3 data!

Even A = 3 can be messy!

R. Cruz-Torres et al., Phys. Lett. B 797 134890 (2019)

In my talk today:

• The per-pair modification is universal.

- B. Schmookler et al., Nature 566 p. 354 (2019)
- The SRC-EMC hypothesis makes predictions for MARATHON.
 E. P. Segarra et al., arXiv:1908.02223 (2019)
- Direct tests with BAND and LAD experiments
 - Recoil spectator tagging at Jefferson Lab

We can isolate SRC nucleons by "tagging" a correlated partner.

Mom. of the scattered e⁻ → determine quark momentum
 Mom. of the spectator → determine if SRC configuration
 Need to measure 200–700 MeV/c spectators!

We can isolate SRC nucleons by "tagging" a correlated partner.

Mom. of the scattered e⁻ → determine quark momentum
 Mom. of the spectator → determine if SRC configuration
 Need to measure 200–700 MeV/c spectators!

What we want to measure:

$$\frac{F_2(x', Q^2, \alpha_s)_{\text{bound}}}{F_2(x, Q^2)_{\text{free}}} \approx \frac{\sigma_{\text{DIS}}(x', Q^2, \alpha_s)_{\text{bound}}}{\sigma_{\text{DIS}}(\text{low } x', Q_0^2, \alpha_s)_{\text{bound}}} \times \frac{\sigma_{\text{DIS}}(\text{low } x, Q_0^2)_{\text{free}}}{\sigma_{\text{DIS}}(x, Q^2)_{\text{free}}} \times R_{\text{FSI}}$$
Tagged DIS measurement Input ≈ 1

At low x, the EMC effect should be small:

.

 $\sigma_{\text{DIS}}(\text{low } x', Q_0^2, \alpha_s)_{\text{bound}} \approx \sigma_{\text{DIS}}(\text{low } x, Q_0^2)_{\text{free}}$

The SRC hypothesis predicts more modification with larger spectator virtuality.

Two upcoming experiments at Jefferson Lab will complement each other.

BAND

- quarks in protons
- detect recoil neutrons
- JLab Hall B
- Data taking started this spring!

LAD

- quarks in neutrons
- detect recoil protons
- JLab Hall C
- to be scheduled...

"Backward Angle Neutron Detector" detects recoiling spectator neutrons

BAND is made up of modular bars made of scintillating plastic.

BAND is made up of modular bars made of scintillating plastic.

BAND assembly (2018)

BAND assembly (2018)

We already see a clear neutron signal.

The SRC hypothesis predicts more modification with larger spectator virtuality.

The SRC hypothesis predicts more modification with larger spectator virtuality.

JLab Hall C

SHMS (≈5 msr)

HMS (≈6 msr)

"Large Acceptance Detector" will detect recoiling spectator protons.

LAD is three panels of scintillator bars, reused from the original CLAS.

GEMs will be a huge help in background reduction.

The SRC hypothesis predicts increasing modification with nucleon momentum.

The SRC hypothesis predicts increasing modification with nucleon momentum.

Universal Modification

Universal Modification

Universal ModificationMARATHON Predictions

Universal ModificationMARATHON Predictions

- Universal Modification
- MARATHON Predictions
- BAND and LAD

LAD spectator SHMS , proton scattered GEMs electron 11 GeV e⁻ Deuterium HMS JLab Hall C jet from struck guark

- Universal Modification
- MARATHON Predictions
- BAND and LAD

- Universal Modification
- MARATHON Predictions
- BAND and LAD

The SRC-EMC hypothesis will be directly confronted by data in the next few years!

