Polarized PDFs from phenomenology

Nobuo Sato

Jefferson Lab

EINN19, Cyprus

The big picture

hadrons as emergent phenomena of QCD

quarks and gluons

The big picture

hadrons as emergent phenomena of QCD

nucleon structure

quarks and gluons

The big picture

hadrons as emergent phenomena of QCD

nucleon structure

quarks and gluons

hadronization

The challenge

The challenge

■ Quark and gluon d.o.f. cannot be measured directly

The challenge

■ Quark and gluon d.o.f. cannot be measured directly

■ Experimental measurements can be interpreted in terms of quark and gluon d.o.f.

The methodology

The methodology

■ Identify relevant quantum correlation functions (QCFs) \rightarrow PDFs, \triangle PDF, FF,...

The methodology

■ Identify relevant quantum correlation functions (QCFs) \rightarrow PDFs, \triangle PDF, FF,...

■ Identify and measure observables sensitive to QCFs \rightarrow factorization

The methodology

■ Identify relevant quantum correlation functions (QCFs) \rightarrow PDFs, \triangle PDF, FF,...

■ Identify and measure observables sensitive to QCFs \rightarrow factorization

■ Bayesian inference \rightarrow global analysis

The community effort

The community effort

■ Adding/updating experimental/lattice observables

The community effort

■ Adding/updating experimental/lattice observables

■ Improve soft/hard separation $\rightarrow \mathrm{HO}$ corrections

The community effort

■ Adding/updating experimental/lattice observables

■ Improve soft/hard separation $\rightarrow \mathrm{HO}$ corrections

■ Simultaneous extraction of QCFs

The community effort

■ Adding/updating experimental/lattice observables

■ Improve soft/hard separation $\rightarrow \mathrm{HO}$ corrections

■ Simultaneous extraction of QCFs

■ Improving the Bayesian regression

Pheno overview

Valence polarization

Valence polarization

Valence polarization

Iterative Monte Carlo analysis of spin-dependent parton distributions

Nobuo Sato, W. Melnitchouk, S. E. Kuhn, J. J. Ethier, and A. Accardi (Jefferson Lab Angular Momentum Collaboration)
Phys. Rev. D 93, 074005 - Published 5 April 2016

Valence polarization

$$
\begin{aligned}
& g_{1}=g_{1}^{\tau 2}+g_{1}^{\tau 3}+g_{1}^{\tau 4} \\
& g_{2}=g_{1}^{\tau 2}+g_{2}^{\tau 3}
\end{aligned}
$$

Iterative Monte Carlo analysis of spin-dependent parton distributions
Nobuo Sato, W. Melnitchouk, S. E. Kuhn, J. J. Ethier, and A. Accardi (Jefferson Lab Angular Momentum Collaboration)
Phys. Rev. D 93, 074005 - Published 5 April 2016

Valence polarization

Iterative Monte Carlo analysis of spin-dependent parton distributions

Nobuo Sato, W. Melnitchouk, S. E. Kuhn, J. J. Ethier, and A. Accardi (Jefferson Lab Angular Momentum Collaboration)
Phys. Rev. D 93, 074005 - Published 5 April 2016

Valence polarization

Iterative Monte Carlo analysis of spin-dependent parton distributions

Nobuo Sato, W. Melnitchouk, S. E. Kuhn, J. J. Ethier, and A. Accardi (Jefferson Lab Angular Momentum Collaboration)
Phys. Rev. D 93, 074005 - Published 5 April 2016

Valence polarization

Iterative Monte Carlo analysis of spin-dependent parton distributions

Nobuo Sato, W. Melnitchouk, S. E. Kuhn, J. J. Ethier, and A. Accardi (Jefferson Lab Angular Momentum Collaboration)
Phys. Rev. D 93, 074005 - Published 5 April 2016

Valence polarization

Iterative Monte Carlo analysis of spin-dependent parton distributions

Nobuo Sato, W. Melnitchouk, S. E. Kuhn, J. J. Ethier, and A. Accardi (Jefferson Lab Angular Momentum Collaboration)
Phys. Rev. D 93, 074005 - Published 5 April 2016

Valence polarization

"Color polarizability"

Iterative Monte Carlo analysis of spin-dependent parton distributions

Nobuo Sato, W. Melnitchouk, S. E. Kuhn, J. J. Ethier, and A. Accardi (Jefferson Lab Angular Momentum Collaboration)
Phys. Rev. D 93, 074005 - Published 5 April 2016

Strange polarization "puzzle"

Strange polarization "puzzle"

Strange polarization "puzzle"

$\square \Delta \mathrm{DIS}+g_{8} \rightarrow$ negative Δs^{+}

Strange polarization "puzzle"

$\square \Delta \mathrm{DIS}+g_{8} \rightarrow$ negative Δs^{+}
$\square \Delta \mathrm{DIS}+\Delta \mathrm{SIDIS}+g_{8} \rightarrow \Delta s^{+}$with sign change

Strange polarization "puzzle"

First Simultaneous Extraction of Spin-Dependent Parton
Distributions and Fragmentation Functions from a Global QCD Analysis
J. J. Ethier, N. Sato, and W. Melnitchouk (Jefferson Lab Angular Momentum (JAM) Collaboration)

Phys. Rev. Lett. 119, 132001 - Published 26 September 2017

Strange polarization "puzzle"

First Simultaneous Extraction of Spin-Dependent Parton
Distributions and Fragmentation Functions from a Global QCD Analysis
J. J. Ethier, N. Sato, and W. Melnitchouk (Jefferson Lab Angular Momentum (JAM) Collaboration)

Phys. Rev. Lett. 119, 132001 - Published 26 September 2017

Strange polarization "puzzle"

First Simultaneous Extraction of Spin-Dependent Parton
Distributions and Fragmentation Functions from a Global QCD Analysis

[^0]
Strange polarization "puzzle"

First Simultaneous Extraction of Spin-Dependent Parton
Distributions and Fragmentation Functions from a Global QCD Analysis

[^1]
Gluon polarization

Evidence for Polarization of Gluons in the Proton

Daniel de Florian, Rodolfo Sassot, Marco Stratmann, and Werner Vogelsang
Phys. Rev. Lett. 113, 012001 - Published 2 July 2014

Gluon polarization

Evidence for Polarization of Gluons in the Proton

Daniel de Florian, Rodolfo Sassot, Marco Stratmann, and Werner Vogelsang
Phys. Rev. Lett. 113, 012001 - Published 2 July 2014

Gluon polarization

Evidence for Polarization of Gluons in the Proton

Daniel de Florian, Rodolfo Sassot, Marco Stratmann, and Werner Vogelsang
Phys. Rev. Lett. 113, 012001 - Published 2 July 2014

Gluon polarization

$$
\int_{0.001}^{1} d x \Delta g(x)=0.013+0.702-0.314
$$

Evidence for Polarization of Gluons in the Proton
Daniel de Florian, Rodolfo Sassot, Marco Stratmann, and Werner Vogelsang
Phys. Rev. Lett. 113, 012001 - Published 2 July 2014

Gluon polarization

Gluon polarization

Inclusive jet production as a probe of polarized parton distribution functions at a future EIC

Radja Boughezal, Frank Petriello, and Hongxi Xing
Phys. Rev. D 98, 054031 - Published 27 September 2018

Gluon polarization

EIC inclusive jet production

Inclusive jet production as a probe of polarized parton distribution functions at a future EIC

Radja Boughezal, Frank Petriello, and Hongxi Xing
Phys. Rev. D 98, 054031 - Published 27 September 2018

Light sea polarization

Light sea polarization

Impact of Recent RHIC Data on Helicity-Dependent Parton Distribution Functions

Light sea polarization

Impact of Recent RHIC Data on Helicity-Dependent Parton Distribution Functions

Light sea polarization

Measurement of the longitudinal spin asymmetries for weak boson production in proton-proton collisions at $\sqrt{s}=510 \mathrm{GeV}$

Light sea polarization

Measurement of the longitudinal spin asymmetries for weak boson production in proton-proton collisions at $\sqrt{s}=510 \mathrm{GeV}$

Constraints from lattice QCD

Constraints from lattice QCD

Bringewatt, Constantinou Melnitchouk, Qiu, NS, Steffens

Constraints from lattice QCD

\square Exp.
\square Lat.
\square Lat. $|z| \leq 10$
\square Lat. $|z| \leq 5$

Bringewatt, Constantinou Melnitchouk, Qiu, NS, Steffens

CENTER for NUCLEAR FEMTOGRAPHY

Next generation of QCD global analysis tools

Current paradigm

■ Global analysis uses Bayesian regression

- It is done via posterior sampling
$\rho(\boldsymbol{a} \mid$ data $)=\mathcal{L}(\boldsymbol{a}$, data $) \pi(\boldsymbol{a})$
■ \boldsymbol{a} are the "shape" parameters for QCF

Why do we use posterior sampling?

Why do we use posterior sampling?

\square We know how to go from a to cross sections e.g.

$$
\frac{d \sigma}{d x d Q^{2}}=\sum_{q} \int_{x}^{1} \frac{d \xi}{\xi} H(\xi) f_{q}\left(\frac{x}{\xi}, \mu ; \boldsymbol{a}\right)
$$

Why do we use posterior sampling?

\square We know how to go from a to cross sections e.g.

$$
\frac{d \sigma}{d x d Q^{2}}=\sum_{q} \int_{x}^{1} \frac{d \xi}{\xi} H(\xi) f_{q}\left(\frac{x}{\xi}, \mu ; \boldsymbol{a}\right)
$$

- We DON'T have the inverse function to go from cross sections to a

The inverse mapper

The inverse mapper

Partnership with computer scientists

- M. Almaeen (ODU)

■ Y. Awadh Alanazi (ODU)
■ M. Houck (Davidson College)

- M. P. Kuchera (Davidson College)

■ Y. Li (ODU)

- W. Melnitchouk (JLab)
- R. Ramanujan (Davidson College)
- NS (JLab)

■ E. Tsitinidi (Davidson College)

Jefferson Lab

ML prototypes

\square Tested and validated in toy DIS-like examples

- How about real QCD analysis?

Application to unpolarized DIS

- Proton DIS kinematics
- Blobs $\propto \chi^{2}$
- $\frac{\chi_{\text {JAM }}^{2}}{N_{\text {pts }}}=1.25$
- $\frac{\chi_{\mathrm{ML}}^{2}}{N_{\mathrm{pts}}}=1.36$

Summary and outook

Summary and outook

■ Still long way to get \triangle PDFs as precise as PDFs

Summary and outook

■ Still long way to get \triangle PDFs as precise as PDFs
■ Awaiting to analyze JLab 12 GeV data

Summary and outook

■ Still long way to get \triangle PDFs as precise as PDFs

- Awaiting to analyze JLab 12 GeV data

■ Critical studies beyond Bayesian reweighting are needed to estimate EIC impact

Summary and outook

■ Still long way to get \triangle PDFs as precise as PDFs

- Awaiting to analyze JLab 12 GeV data

■ Critical studies beyond Bayesian reweighting are needed to estimate EIC impact
■ New tools for global analysis using machine learning

[^0]: J. J. Ethier, N. Sato, and W. Melnitchouk (Jefferson Lab Angular Momentum (JAM) Collaboration) Phys. Rev. Lett. 119, 132001 - Published 26 September 2017

[^1]: J. J. Ethier, N. Sato, and W. Melnitchouk (Jefferson Lab Angular Momentum (JAM) Collaboration) Phys. Rev. Lett. 119, 132001 - Published 26 September 2017

