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The methodology

Identify relevant quantum correlation
functions (QCFs) → PDFs, ∆PDF, FF,...

Identify and measure observables sensitive to
QCFs → factorization

Bayesian inference → global analysis
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Adding/updating experimental/lattice observables

Improve soft/hard separation → HO corrections

Simultaneous extraction of QCFs
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Pheno overview
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Strange polarization “puzzle”

∆DIS + g8 → negative ∆s+

∆DIS + ∆SIDIS + g8 → ∆s+ with sign change
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∫ 1
0.001 dx∆g(x) = 0.013 + 0.702− 0.314
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Next generation of QCD
global analysis tools
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Current paradigm
Global analysis uses Bayesian regression

It is done via posterior sampling

ρ(a|data) = L(a, data)π(a)

a are the “shape” parameters for QCF
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Why do we use posterior sampling?

We know how to go from a to cross sections e.g.
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We DON’T have the inverse function
to go from cross sections to a
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RN → RM
Can we use Machine
Learning?
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Partnership with computer scientists

M. Almaeen (ODU)
Y. Awadh Alanazi (ODU)
M. Houck (Davidson College)
M. P. Kuchera (Davidson College)
Y. Li (ODU)
W. Melnitchouk (JLab)
R. Ramanujan (Davidson College)
NS (JLab)
E. Tsitinidi (Davidson College)
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ML prototypes
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Application to unpolarized DIS
Proton DIS
kinematics
Blobs ∝ χ2

χ2
JAM
Npts

= 1.25
χ2

ML
Npts

= 1.36
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Summary and outook

Still long way to get ∆PDFs as precise as PDFs
Awaiting to analyze JLab 12 GeV data
Critical studies beyond Bayesian reweighting are
needed to estimate EIC impact
New tools for global analysis using machine
learning
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