Polarized PDFs from phenomenology

Nobuo Sato

Jefferson Lab

EINN19, Cyprus

The big picture

hadrons as emergent phenomena of QCD

quarks and gluons

The big picture

hadrons as emergent phenomena of QCD

nucleon structure

quarks and gluons

The big picture

hadrons as emergent phenomena of QCD

nucleon structure

quarks and gluons

hadronization

The challenge

The challenge

Quark and gluon d.o.f. cannot be measured directly

The challenge

Quark and gluon d.o.f. cannot be measured directly

Experimental measurements can be interpreted in terms of quark and gluon d.o.f.

■ Identify relevant quantum correlation functions (QCFs) \rightarrow PDFs, \triangle PDF, FF,...

■ Identify relevant quantum correlation functions (QCFs) \rightarrow PDFs, \triangle PDF, FF,...

Identify and measure observables sensitive to
 QCFs \rightarrow factorization

■ Identify relevant quantum correlation functions (QCFs) \rightarrow PDFs, \triangle PDF, FF,...

Identify and measure observables sensitive to
 QCFs \rightarrow factorization

Bayesian inference \rightarrow **global analysis**

Adding/updating experimental/lattice observables

Adding/updating experimental/lattice observables

• Improve soft/hard separation \rightarrow HO corrections

Adding/updating experimental/lattice observables

• Improve soft/hard separation \rightarrow HO corrections

Simultaneous extraction of QCFs

Adding/updating experimental/lattice observables

• Improve soft/hard separation \rightarrow HO corrections

Simultaneous extraction of QCFs

Improving the Bayesian regression

Pheno overview

e

1.

X

Iterative Monte Carlo analysis of spin-dependent parton distributions

 $g_1 = g_1^{\tau 2} + g_1^{\tau 3} + g_1^{\tau 4}$ $g_2 = g_1^{\tau 2} + g_2^{\tau 3}$

Iterative Monte Carlo analysis of spin-dependent parton distributions

Iterative Monte Carlo analysis of spin-dependent parton distributions

Iterative Monte Carlo analysis of spin-dependent parton distributions

Nobuo Sato, W. Melnitchouk, S. E. Kuhn, J. J. Ethier, and A. Accardi (Jefferson Lab Angular Momentum Collaboration) Phys. Rev. D **93**, 074005 – Published 5 April 2016

 \boldsymbol{x}

E155

0.6 0.1

HERMES $Q^2 \in [1.1, 2.8]$

 A^p

 \tilde{A}^p

 A_2^p

0.2

 $O^2 \in [1.1, 3.3]$

Valence polarization

Iterative Monte Carlo analysis of spin-dependent parton distributions

Higher twists

(c)

x

Iterative Monte Carlo analysis of spin-dependent parton distributions

 e^{-}

Iterative Monte Carlo analysis of spin-dependent parton distributions

x

 $x \Delta s^+$

0.3 0.5 0.7

New York

0.1

 $\Delta \mathsf{DIS} + g_8 \rightarrow \mathsf{negative} \ \Delta s^+$

• $\Delta DIS + g_8 \rightarrow \text{negative } \Delta s^+$ • $\Delta DIS + \Delta SIDIS + g_8 \rightarrow \Delta s^+$ with sign change

First Simultaneous Extraction of Spin-Dependent Parton Distributions and Fragmentation Functions from a Global QCD Analysis

First Simultaneous Extraction of Spin-Dependent Parton Distributions and Fragmentation Functions from a Global QCD Analysis

. بن

 K^+

X

First Simultaneous Extraction of Spin-Dependent Parton Distributions and Fragmentation Functions from a Global QCD Analysis

 K^+

First Simultaneous Extraction of Spin-Dependent Parton Distributions and Fragmentation Functions from a Global QCD Analysis

Evidence for Polarization of Gluons in the Proton

Evidence for Polarization of Gluons in the Proton

Evidence for Polarization of Gluons in the Proton

$\int_{0.001}^{1} dx \Delta g(x) = 0.013 + 0.702 - 0.314$

Evidence for Polarization of Gluons in the Proton

e

X

EIC inclusive jet production

Inclusive jet production as a probe of polarized parton distribution functions at a future EIC

Radja Boughezal, Frank Petriello, and Hongxi Xing Phys. Rev. D **98**, 054031 – Published 27 September 2018

Inclusive jet production as a probe of polarized parton distribution functions at a future EIC

Radja Boughezal, Frank Petriello, and Hongxi Xing Phys. Rev. D 98, 054031 - Published 27 September 2018

Gluon polarization

Distribution Functions

Emanuele R. Nocera (Oxford U., Theor. Phys.)

Impact of Recent RHIC Data on Helicity-Dependent Parton Distribution Functions

Emanuele R. Nocera (Oxford U., Theor. Phys.)

Measurement of the longitudinal spin asymmetries for weak boson production in proton-proton collisions at $\sqrt{s}=510~{
m GeV}$

J. Adam *et al.* (STAR Collaboration) Phys. Rev. D **99**, 051102(R) – Published 14 March 2019

Measurement of the longitudinal spin asymmetries for weak boson production in proton-proton collisions at $\sqrt{s} = 510~{
m GeV}$

J. Adam *et al.* (STAR Collaboration) Phys. Rev. D **99**, 051102(R) – Published 14 March 2019

Constraints from lattice QCD

Constraints from lattice QCD

Bringewatt, Constantinou Melnitchouk, Qiu, NS, Steffens

Constraints from lattice QCD

Bringewatt, Constantinou Melnitchouk, Qiu, NS, Steffens

Next generation of QCD global analysis tools

Current paradigm

Global analysis uses Bayesian regression

It is done via posterior sampling

$$\rho(\boldsymbol{a}|\text{data}) = \mathcal{L}(\boldsymbol{a}, \text{data})\pi(\boldsymbol{a})$$

$\blacksquare a$ are the "shape" parameters for QCF

Why do we use posterior sampling?

Why do we use posterior sampling?

• We know how to go from a to cross sections e.g.

$$\frac{d\sigma}{dxdQ^2} = \sum_{q} \int_{x}^{1} \frac{d\xi}{\xi} H(\xi) f_q\left(\frac{x}{\xi}, \mu; \mathbf{a}\right)$$

Why do we use posterior sampling?

• We know how to go from a to cross sections e.g.

$$\frac{d\sigma}{dxdQ^2} = \sum_{q} \int_{x}^{1} \frac{d\xi}{\xi} H(\xi) f_q\left(\frac{x}{\xi}, \mu; \mathbf{a}\right)$$

We DON'T have the inverse function to go from cross sections to a

The inverse mapper

The inverse mapper

Can we use Machine Learning?

Partnership with computer scientists

- M. Almaeen (ODU)
- Y. Awadh Alanazi (ODU)
- M. Houck (Davidson College)
- M. P. Kuchera (Davidson College)
- Y. Li (ODU)
- W. Melnitchouk (JLab)
- R. Ramanujan (Davidson College)
- NS (JLab)
- E. Tsitinidi (Davidson College)

(İ) ODU DAVIDSON

ML prototypes

Tested and validated in toy DIS–like examples

How about real QCD analysis?

Application to unpolarized DIS

Application to unpolarized DIS

g

 $u_{
m V}$

 $d_{\rm v}$

 $ar{d} - ar{u}$

0.8 **x**

Application to unpolarized DIS

 \blacksquare Still long way to get $\triangle \mathsf{PDFs}$ as precise as PDFs

Still long way to get △PDFs as precise as PDFs
Awaiting to analyze JLab 12 GeV data

Still long way to get △PDFs as precise as PDFs
Awaiting to analyze JLab 12 GeV data
Critical studies beyond Bayesian reweighting are needed to estimate EIC impact

• Still long way to get $\triangle PDFs$ as precise as PDFs Awaiting to analyze JLab 12 GeV data Critical studies beyond Bayesian reweighting are needed to estimate EIC impact New tools for global analysis using machine

learning