PDFs from Phenomenology

Lucian Harland-Lang, University of Oxford

EINN 2019, Paphos, Cyprus, 29 October 2019

Outline

- ★ Why are PDFs important for collider phenomenology and how do we extract them?
- $\star\,$ Status of current global fits and role of LHC.
- ★ Outlook for future: HL-LHC and LHeC.
- \star Challenges of current high precision LHC era.
- ★ Other topics of interest: theory uncertainties and the photon PDF.

Motivation

• Ultimate reach of LHC limited by knowledge of PDFs.

3

PDF Fits - Basic Idea

• Instead of trying to predict PDFs from first principles, fit to data we do understand/can rely on Standard Model predictions. Based on:

- ★ QCD **factorization** theorems.
- Q: Energy of the quark/gluon collision * Precise predictions for parton-level processes of the realizability of pQCD. g(x,Q): Probability of finding a gluon inside a proton, Carrying a graption and procontrol of uncertainting the proton's momentum momentum, when probed with energy Q_1
- momentum, when probed with energy Q
 Understanding of all other sources of uncertainty (coupling, missing higher orders...).

$$\sigma_{lp} \simeq \widetilde{\sigma}_{lq} \left(\alpha_s, \alpha \right) \otimes q(x, Q)$$

 $\sigma_{pp} \simeq \widetilde{\sigma}_{q\bar{q}} \left(\alpha_s, \alpha \right) \otimes q(x_1, Q) \otimes \bar{q}(x_2, Q)$

Factorization $\Rightarrow q_{DIS}(x, Q^2) \equiv q_{DY}(x, Q^2)$

PDF Fits

• For LHC (and elsewhere) aim to constrain PDFs to high precision for all flavours $(q, \overline{q}, g \dots)$ over a wide x region. To achieve this: performs global PDF fits to wide range of data.

• Various major global fitting collaboration (ABM, CT, MMHT, NNPDF), each taking different approach to this.

• Also various specialised PDF sets: CJ (focus on high x), HERAPDF (fit to HERA data alone), while ATLAS/CMS also performing fits to their data.

PDF Fits: Work Flow

$$f_i(x, Q_0): A_f x^{a_f} (1-x)^{b_f} \times \underbrace{\sum_{i=1}^n \alpha_{f,i} P_i(y(x))}_{NN_i(x)}, \text{ CT, MMHT...}$$

Global (CT...) ? Limited dataset (HERAPDF...)?

Treatment of heavy flavours, higher twists, perturbative order.....

DGLAP: $f(x, Q_0) \rightarrow f(x, \mu_{\text{data}})$

$$f(x,\mu) \pm \Delta(x,\mu)$$

Global Fits: Datasets

 ν_{μ} μ^{-} W d.s

	Process	Subprocess	Partons	<i>x</i> range			
Fixed Target	$\ell^{\pm}\left\{p,n\right\} \to \ell^{\pm} + X$	$\gamma^* q \rightarrow q$	q, \bar{q}, g	$x \gtrsim 0.01$			
	$\ell^{\pm} n/p \to \ell^{\pm} + X$	$\gamma^* d/u \to d/u$	d/u	$x \gtrsim 0.01$			
	$pp \rightarrow \mu^+\mu^- + X$	$u ar{u}, d ar{d} ightarrow \gamma^*$	$ar{q}$	$0.015 \lesssim x \lesssim 0.35$			
	$pn/pp \rightarrow \mu^+\mu^- + X$	$(u\bar{d})/(u\bar{u}) \rightarrow \gamma^*$	\bar{d}/\bar{u}	$0.015 \lesssim x \lesssim 0.35$			
	$\nu(\bar{\nu}) N \to \mu^-(\mu^+) + X$	$W^*q \rightarrow q'$	q,ar q	$0.01 \lesssim x \lesssim 0.5$	- E	H1 a	nd ZEUS
	$\nu N \rightarrow \mu^- \mu^+ + X$	$W^*s \to c$	S	$0.01 \lesssim x \lesssim 0.2$	× 107		 HERA NC o'p 0.4 fb⁻¹ HERA NC o'p 3.5 fb⁻¹
	$\bar{\nu} N \rightarrow \mu^+ \mu^- + X$	$W^*\bar{s} \to \bar{c}$	\overline{S}	$0.01 \lesssim x \lesssim 0.2$	5 10°	K ₁₀ = 0.00005, i+21 K ₁₀ = 0.000000 i+20 K ₁₀ = 0.000000, -10	vis = 318 GeV
	$e^{\pm} p \rightarrow e^{\pm} + X$	$\gamma^* q \to q$	g,q,ar q	$0.0001 \lesssim x \lesssim 0.1$	10.8	- 0.00000, is 10 5 = 1.000.02, is:	HERAPDF20 CT NNLO HERAPDF20 CT NNLO
	$e^+ p \to \bar{\nu} + X$	$W^+ \{d, s\} \to \{u, c\}$	<i>d</i> , <i>s</i>	$x \gtrsim 0.01$	104		6, 616 H10, 614 = 8, H23, 613
Collider DIS	$e^{\pm}p \rightarrow e^{\pm}c\bar{c} + X$	$\gamma^* c \to c, \gamma^* g \to c \bar{c}$	с, g	$10^{-4} \lesssim x \lesssim 0.01$			$n_{H_2} = 0.003$, i=0.2 $t_{H_2} = 0.005$, i=0
	$e^{\pm}p \rightarrow e^{\pm}b\bar{b} + X$	$\gamma^*b \to b, \gamma^*g \to b\bar{b}$	<i>b</i> , <i>g</i>	$10^{-4} \lesssim x \lesssim 0.01$	10		1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, -
	$e^{\pm}p \rightarrow \text{jet} + X$	$\gamma^*g ightarrow q ar q$	8	$0.01 \lesssim x \lesssim 0.1$	102	Note -	
	$p\bar{p} \rightarrow \text{jet} + X$	$gg, qg, qq \rightarrow 2j$	g,q	$0.01 \lesssim x \lesssim 0.5$	10		4-0.0.14
Tayatron	$p\bar{p} \to (W^{\pm} \to \ell^{\pm} \nu) + X$	$ud \to W^+, \bar{u}\bar{d} \to W^-$	u, d, \bar{u}, \bar{d}	$x \gtrsim 0.05$	· · · ·		4/- 425/1-2
Tevatron	$p\bar{p} \to (Z \to \ell^+ \ell^-) + X$	$uu, dd \rightarrow Z$	u, d	$x \gtrsim 0.05$	10 *		New York Street
	$p\bar{p} \rightarrow t\bar{t} + X$	$qq \rightarrow t\bar{t}$	q	$x \gtrsim 0.1$	10 "	and the second se	and a second and a second
	$pp \rightarrow \text{jet} + X$	$gg, qg, q\bar{q} \rightarrow 2j$	g,q	$0.001 \lesssim x \lesssim 0.5$	10 3		I
	$pp \to (W^\pm \to \ell^\pm \nu) + X$	$u\bar{d} \rightarrow W^+, d\bar{u} \rightarrow W^-$	$u, d, \bar{u}, \bar{d}, g$	$x \gtrsim 10^{-3}$	1	× *	0 ² / GeV ²
	$pp \to (Z \to \ell^+ \ell^-) + X$	$q\bar{q} \rightarrow Z$	q, \bar{q}, g	$x \gtrsim 10^{-3}$			•
LHC	$pp \to (Z \to \ell^+ \ell^-) + X, p_\perp$	$gq(\bar{q}) \rightarrow Zq(\bar{q})$	g,q,ar q	$x \gtrsim 0.01$			
	$pp \rightarrow (\gamma^* \rightarrow \ell^+ \ell^-) + X$, Low mass	$q\bar{q} \rightarrow \gamma^*$	q, \bar{q}, g	$x \gtrsim 10^{-4}$			
	$pp \rightarrow (\gamma^* \rightarrow \ell^+ \ell^-) + X$, High mass	$q\bar{q} \rightarrow \gamma^*$	$ar{q}$	$x \gtrsim 0.1$			
	$pp \rightarrow W^+ \bar{c}, W^- c$	$sg \to W^+c, \bar{s}g \to W^-\bar{c}$	s, s	$x \sim 0.01$			
	$pp \rightarrow t\bar{t} + X$	$gg \rightarrow t\bar{t}$	<i>g</i>	$x \gtrsim 0.01$			
	$pp \rightarrow D, B + X$	$gg \rightarrow c\bar{c}, b\bar{b}$	<i>g</i>	$x \gtrsim 10^{-6}, 10^{-5}$			
	$pp \rightarrow J/\psi, \Upsilon + pp$	$\gamma^*(gg) \to c\bar{c}, b\bar{b}$	8	$x \gtrsim 10^{-6}, 10^{-5}$			
	$pp \rightarrow \gamma + X$	$gq(\bar{q}) \rightarrow \gamma q(\bar{q})$	8	$x \gtrsim 0.005$			

Global Fits: Kinematic Coverage

• Global fits achieve broad coverage from low to high x, and over many orders of magnitude in Q^2 .

Fit Quality

Data set

• Fits to wide range of data from different colliders/experiments. Is a good/ reliable fit possible from this? Yes!

NLO

LO

NNLO

Current Status

Fits Today

• Current fits very much aiming for (and in some cases achieving) high precision (~1% level) PDF determination in some regions. Key ingredients:

• LHC data now playing a key role in all fits.

• Example from recent CT18 fit. Lagrange multiplier scans determining constraints on gluon at different χ^2 values:

Example 1 - The Gluon

- Gluon at high x is both important for
 BSM searches and quite poorly
 constrained from DIS.
- LHC data such plays crucial role in constraining this.

- Generically achieved by looking for gluon-initiated processes at high system transverse momentum/invariant mass/rapidity.
- Three textbook candidates at LHC:

M. Ubiali, Higgs Coupling 2019

Example 1 - The Gluon

NNPDF collaboration, arXiv:1706.00428

• Impact of most recent LHC data (red \rightarrow green) **significant**, with percent level uncertainties across wide range of x.

7

Example 2 - Proton Strangeness

- Vector boson (W, Z) production proceeds via range of channels. $u\overline{d}, c\overline{s} \quad (u\overline{s}, c\overline{d}) \to W^+, d\overline{u}, s\overline{c} \quad (s\overline{u}, d\overline{c}) \to W^-, q\overline{q} \to Z/\gamma^*,$
- Least constrained involves initial state s, s̄ (no valence s) → sensitive to proton strangeness.
- Only in principle: small contribution, requires **precise data** to pin down.

Example 2 - Proton Strangeness

 Impact of ATLAS data significant. Most notably: prefers larger strangeness than global fits, where previous constraints from neutrinoinduced DIS (*vs* → *lc*).

• However global fits can safely accommodate both (rather distinct) datasets. Key ingredient: new NNLO calculation of DIS process.

Status in 2015

- Typical to combine three major global fits into '**PDF4LHC**' combination.
- Consider e.g. gluon PDF at scale relevant to Higgs production.
- Result in **2015** (already with some LHC data):

• How does this look 4 years (and much LHC data) later?

Status in 2019

Status in 2019

- Note preliminary: updated 'MMHT19' release coming soon.
- Similar situation for other partons (backup).

- Spread between groups has increased! Not always straightforward picture of ever decreasing PDF errors.
- To understand this: detailed
 benchmarking + combination
 exercise in early stages.

Looking to the Future

LHC: The Future

• At very **early stage** in LHC: so far only a few percent of the final projected data sample to be collected during High Luminosity (HL)-LHC running.

• In addition exciting upgrade possibility of Large Hadron Electron Collider (LHeC): colliding lepton beam with LHC protons. Providing unprecedented high precision DIS data on proton structure.

Ultimate PDFs - Motivation

- Both HL-LHC and LHeC (if approved) will provide a vast range of data with a direct impact on the PDFs.
- **Question:** what exactly can we expect that impact to be?
- Collaborative effort to produce 'Ultimate' PDF set.

• This ultimate expected precision from PDF fits sets the ultimate bar for any lattice determinations.

Basic Idea

Produce theory predictions for relevant processes, in kinematic region probed by HL-LHC and LHeC

Produce pseudodata - binned predictions, provided with corresponding statistical + systematic errors

Perform PDF fit to this pseudodata

Evaluate impact on PDF uncertainties

- Sub percent level uncertainty in e.g. gluon in some *x* regions. Impressive constraints out to rather high *x* in general.
- LHeC placing very clean constraints across *x* range.

Challenges

Challenges

- Have so far covered the good news: the ongoing impact of LHC data on PDF errors (\rightarrow 1% level) with encouraging outlook for future.
- However not the whole picture: as collider data becomes increasingly precise **cracks** starting to appear in data/theory comparison.
- In fact seen to occur in all three of the 'textbook' LHC processes for probing PDFs at high x :

• In more detail...

$$\chi^2/N_{\rm pts} \ (N_{\rm pts}^{\rm tot} = 25)$$

- ...find **terrible fit** to full dataset! What is going on?
- Theory input: PDFs + parton-level theory:

- Data itself: rather far from this!
- Procedure to 'unfold' data back to parton level distribution(s) is complex and introduces many new systematic error sources.

p_T	0.53
y_t	3.12
y_{tt}	3.51
M_{tt}	0.70
$p_T + M_{tt}$	5.73
Combined	7.00

S. Bailey & LHL, arXiv:1909.10541

- Many such effects can be evaluated precisely in data-driven ways, but in some cases rely on further theory input.
- Correction from e.g. parton shower estimated by Monte Carlo simulation.
- Uncertainty on this: difference between results from two MCs.
- Increasingly such errors completely dominate!
- How to treat correlations in these error sources?
- Default correlation gives terrible χ^2 . loosening this improves fit a lot.
- Unfortunately has rather large effect on extracted gluon PDF.
- More work needed to understand this.

х

Other Examples: Jets and Z pt

LHL, R.S. Thorne, A.D. Martin, EPJC78 (2018) no.3, 248

0.95

0.9

0.85 L 100

General Approach? What Next?

https://conference.ippp.dur.ac.uk/event/794/contributions/4605/attachments/3737/4229/michaelwilson_talk.pdf

- One possible route: define a general procedure for dealing with case where fit quality bad simply because **correlations** difficult to estimate*.
- Recent approach attempts this by defining a modified 'stable'
 covariance matrix:
- One possibility, though need to be careful one keeps correlations where they are well established (luminosity (!) etc...).

M. Wilson, PDF4LHC September 2019

Stat Estm.	Fit using $ ilde{\Sigma} _{k=500}$	fit using Σ
$\chi^2/N_{\rm data}$	1.00035	1.16328
$\langle \chi^2/\textit{N}_{ m data} angle$	1.095 ± 0.038	1.253 ± 0.033

 Basic conclusion/worry: these sort of issues *might* limit eventual precision we can achieve in LHC PDF fits. But no final word on this yet: work on this very much ongoing!

***N.B.** It is not an established fact that this is the cause of the issues I have discussed!

Other Topics of Interest

Theory Uncertainties

• PDF fit schematically given by inverting:

Dataset
$$O \sim f \otimes \sigma \sim f \otimes \left(\sigma^{(0)} + \alpha_S \sigma^{(1)} + \cdots\right)$$

- Until recently only PDF errors corresponding to data errors in fit included.
- However in principle not only error source. Also that due to missing higher orders (the '...') in theory, $\overline{fr}_{m,m=1}^{\chi^2}$ truncation of pert. expansion.
 - Recent work on this: construct theory covariance matrix from scale variations (standard estimate of MHO uncertainty).

$$\delta O(\mu_F, \mu_R, \mu_0) : \quad \mu_{F,R} \in \left(k\mu_0, \frac{\mu_0}{k}\right)$$

R. Abdul Khalek et al., arXiv:1906.10698

- Impact on PDF uncertainties at NLO not negligible (will be less at NNLO).
- However not the end of the story. Important open questions:
- \star Are scale variations the best way to estimate MHOs?
- ★ Risk of **double counting** with MHO uncertainty already accounted for when making predictions via PDFs?
 - Recent work on this: yes!
 - Basic idea: consider PDF fit as direct relationship between $O_{\text{fit}} \rightarrow O_{\text{pred}}$. $O_1 \leftrightarrow O_2$
 - Work ongoing on resolving these questions.

Fit

Photon PDF

 $W, Z, WH, ZH, WW, t\bar{t}, jets...$

- In high precision LHC era, photon-initiated contributions of relevance to phenomenology.
- Nice example of parton that does not exactly fit into the same PDF paradigm as quark/gluons.
- First attempts at simple models/fitting freely replaced by 'LUXqed': photon PDF directly related to (precisely measured) proton structure functions.

LHL eta al., Phys. Rev. D94 (2016) no.7, 074008

- Very recent paper: not clear one needs to talk in terms of photon PDF to calculate photon-initiated production*, and more precise not to.
- Instead calculate cross section **directly** in terms of proton structure functions.

40

50

*For QED corrections to DGLAP - do need!

30

 $m \dots [C \circ V]$

20

36

60

- Conventional PDF picture not the only input for LHC pheno.
- Though note input (proton structure functions) still fundamentally from experiment.

Summary/Outlook

- ★ LHC phenomenology and PDF determination has entered high precision era. Percent level (and below) uncertainties possible.
- ★ Encouraging results from LHC already, and a very encouraging outlook from future High-Luminosity running (LHeC?).
- ★ However already challenges in accounting for this level precision in PDF fits appearing. Will be focus of much future work, but in such a context input from lattice could be invaluable.

Thank you for listening!

Backup

Modified Covariance Matrix

• obtain correlation matrix from covariance matrix $c_{ij} = \frac{\sum_{ij}}{\sqrt{\sum_{ij} \sum_{ij}}}$

M. Wilson, PDF4LHC September 2019

- perform eigenvalue decomposition on c giving Λ and U such that $c = U^t \Lambda U$.
- obtain new eigenvalues $\tilde{\Lambda}_{ij} = \delta_{ij} \min(\Lambda_{ij}, \hat{\lambda})$ where $\hat{\lambda} = \max(\Lambda_{ij})/k$ where k is an input parameter specifying a threshold condition number
- construct $\tilde{c} = U^t \tilde{\Lambda} U$ and use to obtain new, regularized covariance matrix $\tilde{\Sigma}_{ij} = \tilde{c} \sqrt{\Sigma_{ii} \Sigma_{jj}}$

This is our regulariation procedure!

HL-LHC: Datasets

Process	Kinematics	$N_{ m dat}$	$f_{\rm corr}$	$f_{ m red}$	Baseline	
$Z p_T$	$\begin{array}{l} 20\mathrm{GeV} \leq p_T^{ll} \leq 3.5\mathrm{TeV} \\ 12\mathrm{GeV} \leq m_{ll} \leq 150\mathrm{GeV} \\ y_{ll} \leq 2.4 \end{array}$	338	0.5	(0.4,1)	[52] (8 TeV)	
high-mass Drell-Yan	$ p_T^{l1(2)} \ge 40(30) \text{GeV} \eta^l \le 2.5, m_{ll} \ge 116 \text{GeV} $	32	0.5	(0.4,1)	[47] (8 TeV)	
top quark pair	$m_{t\bar{t}} \simeq 5 \text{ TeV}, y_t \le 2.5$	110	0.5	(0.4,1)	[50] (8 TeV)	
W+charm (central)	$p_T^{\mu} \ge 26 \text{GeV}, p_T^c \ge 5 \text{GeV}$ $ \eta^{\mu} \le 2.4$	12	0.5	(0.2, 0.5)	[24] (13 TeV)	
W+charm (forward)	$\begin{vmatrix} p_T^{\mu} \ge 20 \text{ GeV}, \ p_T^c \ge 20 \text{ GeV} \\ p_T^{\mu+c} \ge 20 \text{ GeV} \\ 2 \le \eta^{\mu} \le 4.5, \ 2.2 \le \eta^c \le 4.2 \end{vmatrix}$	10	0.5	(0.4,1)	LHCb projection	
Direct photon	$E_T^{\gamma} \lesssim 3 \text{ TeV}, \eta_{\gamma} \leq 2.5$	118	0.5	(0.2, 0.5)	[55] (13 TeV)	
Forward W, Z	$\begin{vmatrix} p_T^l \ge 20 \text{ GeV}, \ 2.0 \le \eta^l \le 4.5 \\ 60 \text{ GeV} \le m_{ll} \le 120 \text{ GeV} \end{vmatrix}$	90	0.5	(0.4,1)	[49] (8 TeV)	
Inclusive jets	$ y \le 3, R = 0.4$	58	0.5	(0.2, 0.5)	[61] (13 TeV)	
Total		768				

sian Representation for Monte Carlo PDFs, Eur

LHeC: Datasets

				- [25] J. Butterworth <i>et al. PDF4LHC recommendations</i>
Observable	E_p	Kinematics	$N_{\rm dat}$	$\mathcal{L}_{int}^{[ab^{-1}]} = 0.001 (2016), doi:10.1088/0954-3899/43/2/023001.$
$\tilde{\sigma}^{ m NC}~(e^-p)$	7 TeV	$5 \times 10^{-6} \le x \le 0.8, \ 5 \le Q^2 \le 10^6 \ \text{GeV}^2$	150	$\begin{array}{c c} & 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0$
$\tilde{\sigma}^{\rm CC} \ (e^- p)$	7 TeV	$8.5 \times 10^{-5} \le x \le 0.8, \ 10^2 \le Q^2 \le 10^6 \ \text{GeV}^2$	114	$\overline{[26] http://hep.ph.liv.ac.uk/~mklein/lhecdata/ a}$
$\tilde{\sigma}^{\rm NC} \left(e^+ p \right)$	7 TeV	$ 5 \times 10^{-6} \le x \le 0.8, \ 5 \le Q^2 \le 5 \times 10^5 \ \text{GeV}^2 $	148	$\frac{1}{e} = \frac{1}{e} $
$\tilde{\sigma}^{\rm CC} (e^+ p)$	7 TeV	8.5 × 10 ⁻⁵ ≤ x ≤ 0.7, 10 ² ≤ Q ² ≤ 5 × 10 ⁵ GeV ²	109	$\frac{1}{27}$ M. Klein and V. Radescu. Parton
$\tilde{\sigma}^{\rm NC} \ (e^- p)$	1 TeV	$5 \times 10^{-5} \le x \le 0.8, \ 2.2 \le Q^2 \le 10^5 \ \mathrm{GeV}^2$	128	CERN-LHeC-Note-2013-002PHY.
$\tilde{\sigma}^{\rm CC}~(e^-p)$	1 TeV	$5 \times 10^{-4} \le x \le 0.8, 10^2 \le Q^2 \le 10^5 {\rm GeV}^2$	94	
$F_2^{c,\mathrm{NC}} \; (e^- p)$	7 TeV	$ 7 \times 10^{-6} \le x \le 0.3, \ 4 \le Q^2 \le 2 \times 10^5 \ \text{GeV}^2 $	111	$\begin{bmatrix} 28 \\ 10 \end{bmatrix}$ S. Carrazza, C. Degrande, S. Iranipour, J. Rojo and T ($\Im 13$) 1005 05015
$F_2^{b,\mathrm{NC}}~(e^-p)$	7 TeV	$ 3 \times 10^{-5} \le x \le 0.3, \ 32 \le Q^2 \le 2 \times 10^5 \ \text{GeV}^2 $	77	$\frac{1.0}{1.0}$
$F_2^{c,\mathrm{CC}} \; (e^- p)$	7 TeV	$10^{-4} \le x \le 0.25, 10^2 \le Q^2 \le 10^5 {\rm GeV}^2$	14	[29] T. Gehrmann, A. Huss, J. Niehues, A. Vogt and D. M.
Total			945	\overline{c} current deep-inelastic scattering to third order in QC
				1doj:10.1016/j.physletb.2019.03.003, 1812.06104.
				$[30]$ 10 ⁶ Currie HERC σ_r LHeC pseudo data
				corrections to riet production in deep inelestic scatte
				10 ^s $t \in C$ σ_r , $f \in D$,
				$\approx 10^4 \begin{bmatrix} \circ e^{-} \text{ HE CC } \sigma_r \end{bmatrix}$
				$[3 \cancel{F}]$ J. Currie, \mathcal{F}_{pb}^{2} . Gehrmann, A. Huss and J. Niehues, NN
				\sim 100 in deep inelastic scattering JHEP 07. 018 (201)
				1703.05977. 05000 an
				[32] 1 Andreev et al Measurement of Jet Production (
				$Scattering at HERA, Erin. Phys. J. \mathbf{C77}(4), 215 (20)$
				$10717-9_{10}1611.03421.10^{-3}$ 10^{-2} 10^{-1} 10^{0}
				49 x

[33] D. Britzger et al. Calculations for deep inelastic