Exclusive single photon production in muon-proton scattering at COMPASS

Johannes Giarra on behalf of the COMPASS collaboration

EINN2019

27. Oct - 02. Nov. Paphos, Cyrpus

Frontiers and Careers in Photonuclear Physics

- Classical Quark Parton Model (QPM)
 - \rightarrow Distribution of longitudinal momentum of quarks in the nucleon (PDFs)
- Consider transvers extension of the nucleon
 - ⇒ Generalized Parton Distribution functions (GPDs)
 - \rightarrow Provide information of the transvers position of the quark in the nucleon
- Properties of GPDs can be investigated by processes where **only a single photon is produced**
 - \rightarrow Deeply Virtual Compton Scattering (DVCS)
- In 2012 a first test measurement of the DVCS was performed at COMPASS (analysed and published)
- In 2016/17 a long term measurement was performed

\Rightarrow Determine the DVCS cross section

Deeply Virtual Compton Scattering (DVCS) at COMPASS

DVCS process:

$$\mu + \mathbf{p}
ightarrow \mu' + \mathbf{p}' + \gamma$$

 \rightarrow Process with same final state: Bethe-Heitler (Bremsstrahlung)

Cross section for exclusive photon production:

$$\sigma(\mu p \to \mu' p \gamma) = \sigma_{DVCS} + \sigma_{BH} + \sigma_{Int.}$$

Kinematic dependencies:

- Q^2 : 4-momentum of virtual photon
- ν : Energy of virtual photon
- t : Momentum transfer to proton
- ${\circ}~\phi~$: Angle between plane of virtual photon and plane of real photon

COMPASS spectrometer setup (2016/17)

Two staged forward spectrometer SM1 + SM2

- Liquid hydrogen target (2.5m, Ø4cm)
- Proton recoil detector (CAMERA)
- ECAL0, ECAL1 and ECAL2 (Photon detection)
- Muon trigger system (μ ID)
 - \sim 300 tracking detector planes

Muon acceptance range: $Q^2 < 100 (\text{GeV/c})^2$

$$x_{Bj} > 10^{-5}$$

Proton identification using CAMERA

- Two concentric cylinder made of scintillator slabs (24 slabs each)
 - Inner ring slab thickness 1 cm
 - Outer ring slab thickness 5 cm
- Time Of Flight (TOF) measurement between inner ring and outer ring
- Calculate $\beta = \text{DOF}/\text{TOF}$

Proton identification using CAMERA

- Two concentric cylinder made of scintillator slabs (24 slabs each)
 - Inner ring slab thickness 1 cm
 - Outer ring slab thickness 5 cm
- Time Of Flight (TOF) measurement between inner ring and outer ring
- Calculate $\beta = \text{DOF}/\text{TOF}$

- $\bullet~{\rm Energy}~{\rm loss}$ in outer ring VS β
- Clean signal of protons

The road to the DVCS cross section

How to determine the target position?

...reconstruct the target position from data.

Muon beam also interacts with target container

Target container:

- Kapton foil
- 2.5m long, 4 cm diameter
- X-Y projection of vertex distribution along the full target
 - Beam profile (diameter 2 cm)
 - Not centered in coordinate system of spectrometer
- $\bullet\,$ For data analysis only vertices inside target volume $\rightarrow\,$ define radial cut

Some more fitting...

Target position (2016)

11 / 22

18.03.2019 11 / 22

Idea:

Use a true random trigger to measure reconstructed muon flux

• True Random trigger

- Na²² (β^+ source) between two PMTs
- e⁺e⁻ annihilation
- 2γ measured in coincidence
 - \Rightarrow Trigger signal
- Signal send to experimental area and fed into trigger logic
- Flux:

 $\mathrm{Flux}_{\mathrm{RT}}[1/s] = rac{\# \mathrm{~of~RT~beam~tracks}}{\# \mathrm{~RT~attempts\cdot RT~time~gate}}$

- \rightarrow Data selection to determine number of beam tracks
- \bullet Luminosity ${\cal L}$

 $\mathcal{L}=\# ~\mathrm{of~target~protons}\cdot Flux$

The road to the DVCS cross section

Slow extraction of SPS beam

- Intensity rises
- ${\scriptstyle \circ }$ Flat top for ${\sim}5{\rm s}$
- Intensity drops
- $\bullet~$ Interested in flat top region $\rightarrow \pm~15\%$ of flat top avg.
- Define begin and end of spill (Time in Spill window)
- Relevant for flux analysis (typ. Flux ${\sim}7{\cdot}10^7~\mu/{\rm spill}$)

Slow extraction of SPS beam

- Intensity rises
- ${\scriptstyle \circ }$ Flat top for ${\sim}5{\rm s}$
- Intensity drops
- $\bullet~$ Interested in flat top region $\rightarrow \pm~15\%$ of flat top avg.
- Define **begin** and **end of spill** (Time in Spill window)
- Relevant for flux analysis (typ. Flux ${\sim}7{\cdot}10^7~\mu/{\rm spill}$)

Checks:

- Find parameters which indicate the performance
- Compare parameter of a spill to the parameter of previous and later spills
 - \rightarrow Reject if too few spills show similar behaviour
- e.g. Reconstructed tracks per vertex, trigger and spill

The road to the DVCS cross section

Selection of exclusive single photon events

Select incoming muon

 \rightarrow Use same selection as for muon flux

Search scattered muon

- Vertex with only one outgoing charged track (same charge as inc. muon)
- Sufficient momentum transfer to proton

Get real photons

- Check for a single photon
- Energy beyond a threshold in eiter one of the ECALs

• Get recoil proton canditates

- TOF measurement
- Identify proton candidates
- \rightarrow Improve event selection by adding "exclusivity cuts"

Cuts:

Incoming μ :

- Track would pass full target length
- 140 GeV/c< $p < \!\!180$ GeV/c

Scattered μ :

•
$$Q^2 > 1 \; ({\rm GeV/c})^2$$

• 0.05 GeV/c< y <0.95 GeV/c

Real photon:

- ECAL0 thr. = 4 GeV
- ECAL1 thr. = 5 GeV
- $\,\circ\,$ ECAL2 thr. = 10 GeV

Proton candidates:

• $\beta > 0.1$

Exclusivity cuts

Difference between spectrometer prediction and CAMERA measurement

Exclusivity cuts

Difference between spectrometer prediction and CAMERA measurement

Exclusivity cuts

Difference between spectrometer prediction and CAMERA measurement

BH process **very well known** over a wide kinematic range \rightarrow MC sample for the BH (HEPGEN)

- Kinematic range where **BH** is dominant
 - \rightarrow Normalice real and MC data according their luminosity
 - \rightarrow Cross check of luminosity
- DVCS contribution by substracting the BH from the data

BH process **very well known** over a wide kinematic range \rightarrow MC sample for the BH (HEPGEN)

- Kinematic range where **BH** is dominant
 - \rightarrow Normalice real and MC data according their luminosity
 - \rightarrow Cross check of luminosity
- DVCS contribution by substracting the BH from the data

BH process **very well known** over a wide kinematic range \rightarrow MC sample for the BH (HEPGEN)

- Kinematic range where **BH** is dominant
 - \rightarrow Normalice real and MC data according their luminosity
 - \rightarrow Cross check of luminosity
- DVCS contribution by substracting the BH from the data

BH process **very well known** over a wide kinematic range \rightarrow MC sample for the BH (HEPGEN)

- Kinematic range where **BH** is dominant
 - \rightarrow Normalice real and MC data according their luminosity
 - \rightarrow Cross check of luminosity
- DVCS contribution by substracting the BH from the data

Status

- Determination of π^0 background
 - $\, \circ \,$ Photons produced by decay of π^0 can be missidentified as exclusive photons
 - MC simulation needed to estimate contribution
- MC quality checks (compare reconstructed MC and real data)
 - Kinematic distributions
 - Detector responses (Efficiencies)
- Produce a sufficient amount of MC data both for LEPTO and HEPGEN to determine the background
 - LEPTO and HEPGEN for the semi-inclusive and exclusive part of π^0 contribution
- Acceptance $a(Q^2, \nu, |t|)$

For each bin:

$$a = \frac{N_{reconstructed}}{N_{generated}}$$

$$N_{generated}: \text{ \# generated events passing cut for flux}$$

$$N_{reconstructed}: \text{ \# reconstructed events passing entire}$$
set of cuts for single-photon production

Thank you for your attention.