

Measurement of helicity dependence of π^0 photoproduction on deuteron

Federico Cividini for the A2 collaboration @ MAMI

EINN Conference

October 29th 2019, Cyprus

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Motivation

- The photon interacts with the internal structure of the nucleon → Excited states (resonances)
- From the excited nucleon one (or more) pseudoscalar meson is emitted
- It is necessary to investigate the different final states
- Nucleon resonances are broad and overlapping, unpolarized cross section is not sufficient to disentangle them

BARYON SPECTROSCOPY & POLARIZATION OBSERVABLES

Formalism

Photo-production of a single pseudo-scalar meson from the nucleon is described theoretically by complex helicity amplitudes:

$$\gamma(\vec{k}) + N(\vec{p_i}) = m(\vec{q}) + N'(\vec{p_f})$$
Spin states: $\pm 1 \pm 1/2 \qquad 0 \pm 1/2$
8 matrix
elements
Parity conservation
$$\gamma(L_{\gamma}^P) = 0$$

From these 4 complex amplitudes is possible to construct

16 polarization observables

Photon polarization		Target polarization	Recoil nucleon polarization	Target and recoil polarizations
	-	 x y z	 x' y' x'	X' X' Z' Z' X Z X Z
Unpolarized Linear polariz. Circular polariz.	σ Σ -	- T - H (-P) G F - E	- P - O _{x'} (-T) O _{z'} C _{x'} - C _{z'}	$\begin{array}{ccccc} T_{x'} & L_{x'} & T_{z'} & L_{z'} \\ (-L_{z'}) & (T_{z'}) & (L_{z'}) & (-T_{z'}) \\ \hline & & & & & & & & \\ \end{array}$

Federico Cividini

Paphos – October 29th, 2019

 $N(J_N^P)$

 $\ \pi(L^P_\pi)$

 $N^*(J^P_{N^*})$

Formalism

Double polarization observable *E*

- Circularly polarized photon beam
- Longitudinally polarized target

Complete set of pion production measurements on both proton and neutron are necessary!!

Formalism

Measurements with neutron

- Lack of data on the neutron
- No free-neutron target \rightarrow **Deuterium** or ³He
 - Deuteron at rest in the lab frame
 - The two nucleons have momentum according to the *Fermi motion*
 - ✓ Re-scattering of the spectator nucleon with the pion or the nucleon involved in the reaction \rightarrow *Final state interactions*

H. Arenhovel et al., Modern Physics Letter A 18, 190-199 (2003).

A2 experimental setup @ MAMI

Electron beam

- Polarized electron beam
- Energy: 1557 MeV
- Current: 1~2 nA
- Helicity flipping

A2 experimental setup @ MAMI

- Photon beam
 - Bremsstrahlung
- Photon tagging with photon tagger
 - $E_{\gamma} = E_{beam} E_{e tagger}$
 - E_{γ} <1.5 GeV
 - $\Delta E_y = 2-4 \text{ MeV}$
- Photon flux normalization
 - Dedicated runs
 - During data taking

MAMI Beam

A2 experimental setup @ MAMI Frozen Spin Target

• Cryostat

- External magnet for polarization procedure
- Frozen spin at 25 mK
- Internal coil to maintain the polarization
- Deuterated Butanol
 - Quickly polarizable
 - Background nuclei with spin 0
 - Long relaxation time $\tau > 1000$ h
- Carbon foam
 - For background subtraction

A2 experimental setup @ MAMI Detectors

Crystal Ball

- 672 Nal crystals 20°<θ<160° (94%)
- 24 plastic scintillators for dE-E particle identification
- 2 MWPCs for charged particles

• TAPS

- 366 BaF₂ crystals
- 72 PbWO₄ crystals
- 1°<0<20° (3%)
- 384 small scintillators for dE-E particle identification
- Cerenkov for vetoing TAPS trigger

Inclusive π^0 polarized cross section on deuteron

$$\overrightarrow{\sigma} = \sigma_{\uparrow\downarrow} - \sigma_{\uparrow\uparrow} = \frac{N_{\uparrow\downarrow} - N_{\uparrow\uparrow}}{\#\gamma} \cdot \frac{1}{P_t} \cdot \frac{1}{P_\gamma} \cdot \frac{1}{\epsilon_{rec}} \cdot \frac{1}{d}$$

- Particle selection:
 - Only 1 π^0 reconstruction
- MC simulation for reconstruction efficiency and double pion contamination
- Photon flux normalization
- No contribution from unpolarized nucleons

 $\gamma + d \rightarrow \pi^0 + X$

Single π^0 **on deuteron**

Total single π^0 polarized cross section [$\gamma + d \rightarrow \pi^0 + X$]

Single π^0 on deuteron Differential polarized cross section

2014-2015 A2 Data
 MAID 2007 free proton + free neutron

From A. Fix based on A. Fix and H. Arenhövel, Phys. Rev. C 72 064004

Federico Cividini

E observable for single π^0 on proton and neutron

$$E = \frac{\sigma^{\uparrow\uparrow} - \sigma^{\uparrow\downarrow}}{\sigma^{\uparrow\uparrow} + \sigma^{\uparrow\downarrow}} = \frac{N^{\uparrow\uparrow} - N^{\uparrow\downarrow}}{(N^{\uparrow\uparrow} + N^{\uparrow\downarrow}) - N_C} \cdot \frac{1}{P_t} \cdot \frac{1}{P_{\gamma}}$$

- Particle identification:
 - 1 π^0 reconstruction
 - Nucleon identification
- Unpolarized carbon and oxygen background from D-Butanol molecule

$$\gamma + d \rightarrow \pi^{0} + p + (n)$$

 $\gamma + d \rightarrow \pi^{0} + n + (p)$

Results for observable E - proton

- This work
- Dieterle et al., Phys Lett B 770, 523, 2017
- E data for free proton from F. Afzal

Federico Cividini

Paphos – October 29th, 2019

0.8

Results for observable E - proton

Federico Cividini

Results for observable E - neutron

- This work
- Dieterle et al., Phys Lett B 770, 523, 2017

Federico Cividini

Results for observable E - neutron

Federico Cividini

Legendre polynomials

- E asymmetry multiplied with the unpolarized cross section from SAID model
- Fit performed with the Legendre associated function of 2^{nd} order with $L_{max} = 1, 2, 3, 4$.

Federico Cividini

Legendre polynomials - proton

Parameters from the fits with $L_{max} = 2$

Proton

Neutron

Legendre polynomials - proton

Parameters from the fits with $L_{max} = 4$

 From F. Afzal on free proton

Federico Cividini

Summary and conclusions

- Measurement of:
 - inclusive polarized single π^0 photoproduction on the deuteron
 - exclusive *E* asymmetry for π^0 from quasi-free proton and quasi-free neutron
- Extended energy range for E
- Agreement between independent analysis and measurements in A2
- Extraction of Legendre parameters
- New input for PWA for π^0 neutron

Summary and conclusions

- Measurement of:
 - inclusive polarized single π^0 photoproduction on the deuteron
 - exclusive *E* asymmetry for π^0 from quasi-free proton and quasi-free neutron
- Extended energy range for E
- Agreement between independent analysis and measurements in A2
- Extraction of Legendre parameters
- New input for PWA for π^0 neutron

Thank you for your attention!