Muonic and other atoms for the radii of the lightest nuclei

Randolf Pohl

Uni Mainz

JGU

EINN 2019 30 October 2019

Outline

- Muonic hydrogen, deuterium and the Proton Radius Puzzle New results from H spectroscopy, e-p scattering
- Muonic helium-3 and -4 Charge radii and the isotope shift
- Muonic present: HFS in μH, μ³He
 10x better (magnetic) Zemach radii
- Muonic future: muonic Li, Be 10-100x better charge radii
- **Ongoing**: Triton charge radius from atomic T(1S-2S) 400fold improved triton charge radius

The Past

Nuclear rms charge radii

from measurements with electrons

- * t: Amroun et al. (Saclay) , NPA 579, 596 (1994)
- * ^{3,4}He: Sick, J.Phys.Chem.Ref Data 44, 031213 (2015)
- * Angeli, At. Data Nucl. Data Tab. 99, 69 (2013)

The "Proton Radius Puzzle"

Measuring R_p using electrons: 0.88 fm (+- 0.7%) using muons: 0.84 fm (+- 0.05%)

μd 2016: RP et al (CREMA Coll.) Science 353, 669 (2016) μp 2013: A. Antognini, RP et al (CREMA Coll.) Science 339, 417 (2013)

The "Proton Radius Puzzle" Measuring R_{p} using electrons: 0.88 fm (+- 0.7%) using muons: 0.84 fm (+- 0.05%) THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE 0.88 fr naure 0.84 fm μ**d 2016** 5.6 o **OIL SPILLS** μ**p 2013** There's more to come PLAGIARISM It's worse than you think **CHIMPANZEES** The battle for survival μ**p 2010** New value from exotic atom trims radius by four per cent 0.87 0.83 0.85 0. 0.84 0.86

μd 2016: RP et al (CREMA Coll.) Science 353, 669 (2016) μp 2013: A. Antognini, RP et al (CREMA Coll.) Science 339, 417 (2013)

The "Proton Radius Puzzle"

Service world-wide

Measuring

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE nature

OIL SPILLS There's more to come PLAGIARISM It's worse than you think **CHIMPANZEES** The battle for survival

'%)

5%)

New value from exotic atom

trims radius by four per cent

Ehe New York Eim

µd 2016: RP et al (CF µp 2013: A. Antognini

A "Proton Radius **Puzzle**" ??

Hydrogen

$$E_n \approx -\frac{R_\infty}{n^2}$$

1

Bohr formula

1

Rydberg constant

Bohr formula

3S ----- 3D

2S — 2P

Rydberg constant

$$E_n = \frac{R_{\infty}}{n^2} + \frac{1.2 MHz}{n^3} \langle r^2 \rangle \delta_{l0} + \Delta(n,l,j)$$

RP et al., Metrologia 54, L1 (2017)

RP et al., Metrologia 54, L1 (2017)

A proton, orbited by a **negative muon**.

Electronic and muonic atoms

Regular hydrogen:

Proton + Electron

Muonic hydrogen:

Proton + Muon

Muon **mass** = **200** * electron mass

Bohr radius = 1/200 of H

200³ = a **few million times** more sensitive to proton size

muon

Vastly not to scale!!

1S -

2S state: μ spends some time **inside** the proton! State is sensitive to the proton size.

2S state: μ spends some time **inside** the proton! State is sensitive to the proton size.

1S

2S state: μ spends some time **inside** the proton! State is sensitive to the proton size.

The accelerator at PSI

The accelerator at PSI

The accelerator at PSI

The accelerator at PSI PAUL SCHERRER INSTITUT Schaffhausen Baser 0 an Villigen, AG caller Luzer Neuchate Davos usanne St. Moritz Gen Lugano latterhoi

2 transitions in muonic H

Muonic Deuterium

muonic

electronic

Theory in muonic D

vs. +- 0.0034 meV experimental uncertainty

(1) charge radius, using calculated TPE

- r_{d} (µD) = 2.12717 (13) $_{exp}$ (82) $_{theo}$ fm vs.
- r_{d} (CODATA-14) = 2.1**4**130 (250) fm

(2) polarizability, using charge radius from isotope shift

 ΔE_{TPE} (theo) = 1.7500 (210) meV vs.

 ΔE_{TPE} (exp) = 1.7591 (59) meV 3.5x more accurate

Krauth et al. (2016) + Pachucki et al. (2018) + Hernandez et al. (2018) + Kalinowski (2018)

Hydrogen

Garching H(2S-4P)

Beyer, Maisenbacher, RP et al, Science 358, 79 (2017)

Garching H(2S-4P)

Beyer, Maisenbacher, RP et al, Science 358, 79 (2017)

Systematics

Contribution	∆ v (kHz)	σ (kHz)
Statistics	0.00	0.41
First-order Doppler shift	0.00	2.13
Quantum interference shift	0.00	0.21
Light force shift	-0.32	0.30
Model corrections	0.11	0.06
Sampling bias	0.44	0.49
Second-order Doppler shift	0.22	0.05
dc-Stark shift	0.00	0.20
Zeeman shift	0.00	0.22
Pressure shift	0.00	0.02
Laser spectrum	0.00	0.10
Frequency standard (hydrogen maser)	0.00	0.06
Recoil shift	-837.23	0.00
Hyperfine structure corrections	–132,552.092	0.075
Total	-133,388.9	2.3

Beyer, Maisenbacher, RP et al, Science 358, 79 (2017)

Mainzer Microtron MAMI

Electron scattering

Mainz MAMI data 2010

Vanderhaeghen, Walcher: 1008.4225
The PRad Experimental Approach

- PRad initial goals:
 - large Q² range in one experimental setting
 - reach to very low Q^2 range (~ 10⁻⁴ GeV/C²)
 - reach to sub-percent precision in cross section
- PRad suggested solutions:
 - use high resolution high acceptance calorimeter:
 - ✓ reach smaller scattering angles: ($\theta_e = 0.7^\circ 7.0^\circ$) ($Q^2 = 2x10^{-4} \div 6x10^{-2}$) GeV/c²;
 - large Q² range in one experimental setting!;
 - ✓ simultaneous detection of ee → ee Moller scattering (best known control of systematics).
 - > use high density windowless H_2 gas flow target:
 - beam background under control;
 - minimize experimental background.

Mainz low Q² data set Phys. Rev. C 93, 065207, 2016

- Two beam energies: $E_0 = 1.1$ GeV and 2.2 GeV to increase Q² range.
- Approved by JLab PAC39 (June, 2012) with high "A" scientific rating.

New Measurements: PRad Old value Muons PRad e-p 2019 hydrogen (2S-2P) Toronto 2019 hydrogen (1S-3S) hydrogen (2S-4P) Paris 2018 Garching 2017 CODA<u>T</u>A-2018 CODATA-2014 5.6σ µD 2016 hydrogen µH 2013 (pre-2016) electron scattering µH 2010 H**H**H (pre-2014) 0.84 0.86 0.83 0.85 0.87 0.88 0.89 proton charge radius R [fm]

New Mainz electron accelerator MESA

Kurt Aulenbacher

MESA — "Mainz Energy-Recovering Superconducting Accelerator

Being built on Campus of JGU Mainz

MAGIX: windowless (gas-jet) target, lowest Q²

Muonic Helium-3 and -4

muonic ³He ions

Muonic Helium-3

Theory: see Franke et al. EPJ D 71, 341 (2017) [1705.00352]

Muonic Helium-4

prel. accuracy: exp +- 0.00019 fm, theo +- 0.00058 fm (nucl. polarizability)

Theory: M. Diepold, RP et al. Ann. Phys. (N.Y.) 396, 220 (2018) (arxiv 1606.05231 (sic!))

Conclusions

Muonic atoms / ions provide:

• ~10x more accurate charge radii, when combined with

calculated polarizability

Conclusions

Muonic atoms / ions provide:

• ~10x more accurate charge radii, when combined with

Ehe New york Eimes

Intermediate conclusions

Muonic atoms / ions provide:

• ~10x more accurate charge radii, when combined with

calculated polarizability

• few times more accurate **nuclear polarizability**,

when combined with charge radius from regular atoms

Muonic atoms are a novel tool for proton and new-nucleon properties!

Intermediate conclusions

Proton radius situation:

- smaller radii from muonic hydrogen and deuterium imply a smaller Rydberg constant
- new H(2S-4P), H(2S-2P), H(1S-3S) give a smaller proton radius
- new H(1S-3S) however confirms large proton radius
- More data coming in!
- H(2S 6P, 8P, 9P, ...) and D(2S-nI) underway in Garching and Colorado
- H(1S 3S, 4S, ..) underway in Paris and Garching
- H(2S-2P) (Hessels @ Toronto)
- Muonium at PSI, J-PARC
- Positronium (Cassidy @ UCL, Crivelli @ ETH)
- He⁺(1S-2S) underway in Garching (Udem) and Amsterdam (Eikema)
- HD⁺, H₂, etc. in Amsterdam (Ubachs) and Paris (Hilico, Karr)
- He (Vassen @ Amsterdam), Li⁺ (Udem @ Garching)
- HCI, e.g. H-like Ne (Tan @ NIST)
- Rydberg-atoms, e.g. Rb (Raithel @ Ann Arbor)
- new low-Q² electron scattering at MAMI, JLab, MESA
- muon scattering: MUSE @ PSI, COMPASS @ CERN

Compare Rydberg values to test QED and SM

The Present

Hyperfine structure in muonic H

CREMA-3 / HyperMu at PSI (R16.02)

The sky in hydrogen

Hyperfine structure in H / μp

The 21 cm line in hydrogen (1S hyperfine splitting) has been **measured** to 12 digits (0.001 Hz) in 1971:

v_{exp} = 1 420 405. 751 766 7 ± 0.000 001 kHz

Essen et al., Nature 229, 110 (1971)

Hyperfine structure in H / μp

The 21 cm line in hydrogen (1S hyperfine splitting) has been **measured** to 12 digits (0.001 Hz) in 1971:

v_{exp} = 1 420 405. 751 766 7 ± 0.000 001 kHz

Essen et al., Nature 229, 110 (1971)

QED test is limited to 6 digits (800 Hz) because of proton structure effects:

$$v_{\text{theo}} = 1\ 420\ 403.\ 1\ \pm 0.6_{\text{proton size}}\ \pm 0.4_{\text{polarizability}}\ \text{kHz}$$

Eides et al., Springer Tracts 222, 217 (2007)

Proton Zemach radius

HFS depends on "Zemach" radius:

 $\Delta E = -2(Z\alpha)m\langle r \rangle_{(2)}E_F$

$$\langle r \rangle_{(2)} = \int d^3r d^3r' \rho_E(r) \rho_M(r') |r-r'|$$

Zemach, Phys. Rev. 104, 1771 (1956)

Form factors and momentum space

$$\Delta E = \frac{8(Z\alpha)m}{\pi n^3} E_F \int_0^\infty \frac{dk}{k^2} \left[\frac{G_E(-k^2)G_M(-k^2)}{1+\kappa} \right]$$

From charge to magnetic properties

2S-2P = Lamb shift

is sensitive to CHARGE radius

1S-HFS = Hyperfine splitting

is sensitive to **ZEMACH** radius

Proton Zemach radius from µp

µp 2013: Antognini et al. (CREMA Coll.), Science 339, 417 (2013)

Proton Zemach radius from µp

PSI Exp. R-16-02: Antognini, RP et al. (CREMA-3 / HyperMu)

see e.g. Schmidt, RP et al., J. Phys. Conf. Ser 1138, 012010 (2018); arXiv 1808.07240

Predicting the resonance position

The resonance position

Searching the resonance

Searching the resonance

The Future

Tritium 1S-2S in a trap

Simulated trapping efficiency

Thanks a lot for your attention

My new Mainz group:

Reinhard Alexander, Adrian Dick, Lukas Görner, Jan Haack, Merten Heppener, Rishi Horn, Ahmed Ouf, Gregor Schwendler, Lukas Schumacher, Benedikt Tscharn, Julia Winter, Katharina Wolk, Marcel Willig

The Garching Hydrogen Team:

Axel Beyer, Lothar Maisenbacher, Arthur Matveev, RP, Ksenia Khabarova, Alexey Grinin, Tobias Lamour, Dylan C. Yost, Theodor W. Hänsch, Nikolai Kolachevsky, Thomas Udem

The CREMA Collaboration:

Aldo Antognini, Fernando D. Amaro, François Biraben, João M. R. Cardoso, Daniel S. Covita, Andreas Dax, Satish Dhawan, Marc Diepold, Luis M. P. Fernandes, Adolf Giesen, Andrea L. Gouvea, Thomas Graf, Theodor W.
Hänsch, Paul Indelicato, Lucile Julien, Paul Knowles, Franz Kottmann, Juilian J. Krauth, Eric-Olivier Le Bigot, Yi-Wei Liu, José A. M. Lopes, Livia Ludhova, Cristina M. B. Monteiro, Françoise Mulhauser, Tobias Nebel, François Nez, Paul Rabinowitz, Joaquim M. F. dos Santos, Lukas A. Schaller, Karsten Schuhmann, Catherine Schwob, David Taqqu, João F. C. A. Veloso, RP

Group at JGU Mainz

Group at JGU Mainz

Open Positions!

pohl @ uni-mainz.de
Correlation between $R_{_{D}}$ and $R_{_{D}}$ / $R_{_{d}}$

1S-2S: Parthey, RP et al., PRL 107, 203001 (2011)

Theory in muonic H

 $\Delta E_{\text{Lamb}} = 206.0336 (15) \text{ meV}_{\text{OED}} + 0.0332 (20) \text{ meV}_{\text{TPE}} - 5.2275 (10) \text{ meV/fm}^2 * R_n^2$

2P fine structure Simple-looking formula $2P_{3/2}$ based on decades of work by E. Borie, M.C. Birse, P. Blunden, C.E. Carlson, $2P_{1/2}$ M.I. Eides, R. Faustov, J.L. Friar, G. Paz, A. Pineda, J. McGovern, K. Griffioen, H. Grotch, 206 meV F. Hagelstein, H.-W. Hammer, R.J Hill, P.Indelicato, 50 THz U.D. Jentschura, S.G. Karshenboim, E.Y. Korzinin, 6 µm V.G. Ivanov, I.T. Lorenz, A.P. Martynenko, G.A. Miller, U.-G. Meissner, P.J. Mohr, Lamb K. Pachucki, V. Pascalutsa, J. Rafelski, shift V.A. Shelyuto, I. Sick, A.W. Thomas, 5.5 µm M. Vanderhaeghen, V. Yerokhin,

(shout if I missed your name!)

Antognini, RP at al., Ann. Phys. (N.Y.) 331, 127 (2013)

Theory in muonic H

Theory of the 2S–2P Lamb shift and 2S hyperfine (

Aldo Antognini^{a,*}, Franz Kottmann^a, François Biraben^b, Paul Indelicato^b, François Nez^b, Randolf Pohl^c

^a Institute for Particle Physics, ETH Zurich, 8093 Zurich, Switzerland

^b Laboratoire Kastler Brossel, École Normale Supérieure, CNRS and Université P. et M. Curie, 75252 Paris, CEDEX 05, France

^c Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany

Our attempt to summarize all the original work by many theorists....

Theory I: "pure" QED

Table 1

All known radius-*independent* contributions to the Lamb shift in μ p from different authors, and the one we selected. Values are in meV. The entry # in the first column refers to Table 1 in Ref. [13]. The "finite-size to relativistic recoil correction" (entry #18 in [13]), which depends on the proton structure, has been shifted to Table 2, together with the small terms #26 and #27, and the proton polarizability term #25. SE: self-energy, VP: vacuum polarization, LBL: light-by-light scattering, Rel: relativistic, NR: non-relativistic, RC: recoil correction.

#	Contribution	Pachucki [10,11]	Nature [13]	Borie-v6 [79]	Indelicato [80]	Our choice	Ref.
1 2 3 19	NR one-loop electron VP (eVP) Rel. corr. (Breit–Pauli) Rel. one-loop eVP Rel. RC to eVP, $\alpha (Z\alpha)^4$	205.0074 0.0169 ^a (incl. in #2) ^b	205.0282 —0.0041	205.0282 —0.0041	205.02821	205.02821 —0.00208 ^c	[80] Eq. (54) [77,78]
4	Two-loop eVP (Källén–Sabry)	1.5079	1.5081	1.5081	1.50810	1.50810	[80] Eq. (57)
5 7 6	One-loop eVP in 2-Coulomb lines $\alpha^2 (Z\alpha)^5$ eVP corr. to Källén–Sabry NR three-loop eVP	0.1509 0.0023 0.0053	0.1509 0.00223 0.00529	0.1507 0.00223 0.00529	0.15102 0.00215	0.15102 0.00215 0.00529	[80] Eq. (60) [80] Eq. (62), [87] [87,88]
9 10 New	Wichmann–Kroll, "1:3" LBL Virtual Delbrück, "2:2" LBL "3:1" LBL		-0.00103 0.00135	$ \begin{array}{r} -0.00102 \\ 0.00115 \\ -0.00102 \end{array} $	-0.00102	-0.00102 0.00115 -0.00102	[80] Eq. (64), [89] [74,89] [89]
20	$\mu { t SE}$ and $\mu { t VP}$	-0.6677	-0.66770	-0.66788	-0.66761	-0.66761	[80] Eqs. (72) + (76)
11 12 21 13 New	Muon SE corr. to eVP $\alpha^2 (Z\alpha)^4$ eVP loop in self-energy $\alpha^2 (Z\alpha)^4$ Higher order corr. to μ SE and μ VP Mixed eVP + μ VP eVP and μ VP in two Coulomb lines	-0.005(1) -0.001	-0.00500 -0.00150 -0.00169 0.00007	-0.004924^{d} -0.00171^{g} 0.00007	0.00005	-0.00254 f -0.00171 0.00007 0.00005	[85] Eq. (29a) ^e [74,90–92] [86] Eq. (177) [74] [80] Eq. (78)
14 15 16	Hadronic VP $\alpha (Z\alpha)^4 m_r$ Hadronic VP $\alpha (Z\alpha)^5 m_r$ Rad corr. to hadronic VP	0.0113(3)	0.01077(38) 0.000047 -0.000015	0.011(1)		0.01121(44) 0.000047 0.000015	[93–95] [94,95] [94,95]
17 22 23 New	Recoil corr. Rel. RC $(Z\alpha)^5$ Rel. RC $(Z\alpha)^6$ Rad. (only eVP) RC $\alpha(Z\alpha)^5$	0.0575 0.045 0.0003	0.05750 	0.0575 —0.04497	0.05747 0.04497 0.0002475	0.05747 	[80] Eq. (88) [80] Eq. (88), [74] [80] Eq. (86)+Tab.II [85] Eq. (64a)
24	Rad. RC $\alpha(Z\alpha)^n$ (proton SE)	-0.0099	-0.00960	-0.0100		-0.01080(100)	[43] ^h [74]
	Sum	206.0312	206.02915	206.02862		206.03339(109)	

Theory in muonic H

Theory in muonic D

 $\Delta E_{\text{Lamb}}^{\mu D} = 228.7854 \text{ (13) } \text{meV}_{\text{QED}} + 1.7150 \text{ (230) } \text{meV}_{\text{TPE}} - 6.1103 \text{ (3) } \text{meV/fm}^2 * R_d^2$

Nuclear structure contributions to the Lamb shift in muonic deuterium.

Item	Contribution	Pachuck	i [55]	Friar [60]		Hernandez et al. [58]		Pach.& Wienczek [65]		Carlson et al. [64]	Our choice			
		AV18		ZRA		AV18 N ³ LO †		AV18		data		value	source	
	Source	1		2		3	4		5		6			
p1	Dipole	1.910	$\delta_0 E$	1.925	Leading C1	1.907	1.926	$\delta_{D1}^{(0)}$	1.910	$\delta_0 E$		1.9165	$\pm \ 0.0095$	3-5
p2	Rel. corr. to p1, longitudinal part	-0.035	$\delta_R E$	-0.037	Subleading C1	-0.029	-0.030	$\delta_L^{(0)}$	-0.026	$\delta_R E$				
p3	Rel. corr. to p1, transverse part					0.012	0.013	$\delta_{T}^{(0)}$						
$\mathbf{p4}$	Rel. corr. to p1, higher-order								0.004	$\delta_{HO}E$				
sum	Total rel. corr., p $2+p3+p4$	-0.035		-0.037		-0.017	-0.017		-0.022			-0.0195	$\pm \ 0.0025$	3-5
p_5	Coulomb distortion, leading	-0.255	$\delta_{C1}E$						-0.255	$\delta_{C1}E$				
$\mathbf{p6}$	Coul. distortion, next order	-0.006	$\delta_{C2}E$						-0.006	$\delta_{C2}E$				
sum	Total Coulomb distortion, $\mathbf{p5+p6}$	-0.261				-0.262	-0.264	$\delta_{C}^{(0)}$	-0.261			-0.2625	$\pm \ 0.0015$	3-5
$\mathbf{p7}$	El. monopole excitation	-0.045	$\delta_{Q0}E$	-0.042	C0	-0.042	-0.041	$\delta_{R2}^{(2)}$	-0.042	$\delta_{Q0}E$				
$\mathbf{p8}$	El. dipole excitation	0.151	$\delta_{Q1}E$	0.137	Retarded C1	0.139	0.140	$\delta_{D1D3}^{(2)}$	0.139	$\delta_{Q1}E$				
p9	El. quadrupole excitation	-0.066	$\delta_{Q2}E$	-0.061	C2	-0.061	-0.061	$\delta_{Q}^{(2)}$	-0.061	$\delta_{Q2}E$				
sum	Tot. nuclear excitation, $\mathbf{p7}{+}\mathbf{p8}{+}\mathbf{p9}$	0.040		0.034	$\rm C0+ret\text{-}C1+C2$	0.036	0.038		0.036			0.0360	$\pm \ 0.0020$	2-5
p10	Magnetic	-0.008 $^{\diamond a}$	$\delta_M E$	-0.011	M1	-0.008	-0.007	$\delta_M^{(0)}$	-0.008	$\delta_M E$		-0.0090	\pm 0.0020	2-5
SUM_1	Total nuclear (corrected)	1.646		1.648 b		1.656	1.676		1.655			1.6615	\pm 0.0103	
p11	Finite nucleon size			0.021	Retarded C1 f.s.	0.020^{\diamond}	c 0.021 $^{\diamond}$	$^{c} \delta_{NS}^{(2)}$	0.020	$\delta_{FS}E$				
p12	n p charge correlation			-0.023	pn correl. f.s.	-0.017	-0.017	$\delta_{np}^{(1)}$	-0.018	$\delta_{FZ}E$				
sum	p11+p12			-0.002		0.003	0.004		0.002			0.0010	\pm 0.0030	2-5
p13	Proton elastic 3rd Zemach moment	$\int_{0.043(3)}$	$\delta_{D}E$	0.030	$\langle r^3 \rangle_{(2)}^{\rm pp}$				$\int_{0.043(3)}$	$\delta_{P}E$		0.0289	\pm 0.0015	$Eq.(13)^d$
p14	Proton inelastic polarizab.	J 0.0 10(0)	0712				27(2)	§N [64]]] 0.010(0)	•F 2	LO 028(2) A Ehadr	1 20 0280	± 0.0020	6
p15	Neutron inelastic polarizab.						27(2)	opol [04]	0.016(8)	$\delta_N E$	$\int 0.028(2) \Delta E$	∫ ^{0.0280}	± 0.0020	0
p16	Proton & neutron subtraction term											-0.0098	\pm 0.0098	$Eq.(15)^e$
sum	Nucleon TPE, $p13+p14+p15+p16$	0.043(3)		0.030		0.03	27(2)		0.059(9)			0.0471	\pm 0.0101	f
SUM_2	Total nucleon contrib.	0.043(3)		0.028		0.03	30(2)		0.061(9)			0.0476	\pm 0.0105	
	Sum, published	1.680(16)	1.941(1	19)	1.69	0(20)		1.717(20)		2.011(740)			
	$\mathbf{Sum}, \mathrm{corrected}$			1.697(1	19) ^g	$1.714(20)^{-h}$		1.707(20)	i	$1.748(740)^{j}$	1.7096	± 0.0147		

Krauth, RP at al., Ann. Phys. (N.Y.) 366, 168 (2016)

+ Pachucki et al., PRA 97, 062511 (2018)

+ Hernandez et al., PLB 778, 377 (2018)

Deuteron radius

Hernandez et al, Phys. Lett. B 778, 377 (2018) Pachucki et al., PRA 97, 062511 (2018)

Q-switched thin-disk laser oscillator

- Prelasing
- Close the laser cavity
- Exponential pulse build up
- Open the cavity
- Extraction of the laser pulse

Thin disk laser with prelasing: Stabilization of the prelasing operation

