

NEWS FROM RHIC

RENEE FATEMI UNIVERSITY OF KENTUCKY

THE RHIC REVIEW

Protons · Sea-Quarks · Polarized Gluons · TSSAs · Heavy lons

Issue: 20	The World's Best Selling Newspaper	Est - 2000
First Edition		October 29, 2019

The end of an era – Final W^{+/-} asymmetries provide strong evidence for flavor symmetry

breaking in the light sea for the polarized sector.

The mystery continues to unfold - The A dependence of forward hadron TSSAs in p+A

collisions continues to fuel theo-

XKCD comics on page 10

Breaking News! First flavor tagged dijet Sivers asymmetry released for DNP. Details on page 23.

New inclusive jet and dijet measurements at $\sqrt{s} =$ 500 GeV push constraints on gluon helicity distributions to lower x – what does this mean for ΔG ?

RELATIVISTIC HEAVY ION COLLIDER

the world's only polarized proton collider...

RELATIVISTIC HEAVY ION COLLIDER

the world's only polarized proton collider...

Run	Species	\sqrt{s} (GeV)	Spin
12	p+p	200	transverse
12	p+p	510	longitudinal
13	p+p	510	longitudinal
15	p+p	200	longitudinal
15	p+p p+Al p+Au	200	transverse

THE RHIC REVIEW

Protons · Sea-Quarks · Polarized Gluons · TSSAs · Heavy lons

Issue: 20	The World's Best Selling Newspap	ber Est - 2000
First Edition		October 29, 2019
The end of an era	– Final W ^{+/-} Rre	eaking News! First

asymmetries provide strong evidence for flavor symmetry

collisions

fuel theo-

continues to

retical work.

XKCD comics on page 10

breaking in the light sea for the polarized sector.

flavor tagged dijet Sivers

asymmetry released for DNP. Details on page 23.

and dijet meas-The mystery continues to 500 GeV push unfold – The A dependence of constraints on forward hadron TSSAs in p+A gluon helicity distributions to lower x – *what*

for ΔG ?

New inclusive jet urements at $\sqrt{s} =$ Topology B Forward - Co does this mean

SEA QUARKS AND FLAVOR SYMMETRIES

SEA QUARKS AND FLAVOR SYMMETRIES

-0.1

SEA QUARKS AND FLAVOR SYMMETRIES

 $\Delta \chi^2 = 1$ (Hessian)

 10^{-1}

x

 10^{-2}

 10^{-1}

х

 10^{-2}

-0.0

SEA QUARKS AND FLAVOR SYMMETRIES

$$A_{L} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}}$$

$$A_L^{W^+} \propto \frac{-\Delta u(x_1)\overline{d}(x_2) + \Delta \overline{d}(x_1)u(x_2)}{u(x_1)\overline{d}(x_2) + \overline{d}(x_1)u(x_2)}$$

$$A_L^{W^-} \propto \frac{-\Delta d(x_1)\overline{u}(x_2) + \Delta \overline{u}(x_1)d(x_2)}{d(x_1)\overline{u}(x_2) + \overline{u}(x_1)d(x_2)}$$

SEA QUARKS AND FLAVOR SYMMETRIES

Forward

$$A_L^{W^+} \propto \frac{-\Delta u(x_1)\overline{d}(x_2) + \Delta \overline{d}(x_1)u(x_2)}{u(x_1)\overline{d}(x_2) + \overline{d}(x_1)u(x_2)} \qquad \frac{-\Delta u}{u}$$

$$A_L^{W^-} \propto \frac{-\Delta d(x_1)\overline{u}(x_2) + \Delta \overline{u}(x_1)d(x_2)}{d(x_1)\overline{u}(x_2) + \overline{u}(x_1)d(x_2)} \qquad \frac{-\Delta d}{d}$$

MIDRAPIDITY

 $W^{+/-} \rightarrow e^{+/-} + \nu_e$

FORWARD

 $W^{+/-} \rightarrow \mu^{+/-} + \nu_e$

- First muon channel W A_L !
- Theoretical curves use the polarized NLO generator CHE with various global fits implemented.
- Backward μ^{-} are at upper limit of uncertainty bands indicating $\Delta \overline{u}$ is larger than fits without RHIC data indicate – similar to mid-rapidity data.
- Forward μ^- ($\sim \Delta d/d$) is below DSSV08 \rightarrow could be explained by sign change in Δd for x > 0.5 ?
- Backward μ^+ show smaller than predicted asymmetries. Possibly due to under-estimated error bars in unpolarized sector due to large \bar{d} contribution in data.

- 2013 results are consistent with previous STAR and PHENIX results
- 2013 confirms enhanced $\Delta \overline{u}$ first seen in the 2011-2012 data.

- 2013 results are consistent with previous STAR and PHENIX results
- 2013 confirms enhanced $\Delta \overline{u}$ first seen in the 2011-2012 data.
- These data show a significant preference for a Δ*ū* > Δ*d* for 0.05 <x < 0.25 at Q² = 10 GeV.

W^{+/-} CROSS-SECTIONS

PHYS. REV. D 98, 032007 (2018)

- Measured at forward and backward rapidity and averaged over arms
- 2013 W→ µ systematic error is dominated by the large uncertainty on the signal-tobackground ratios.
- Good agreement with previous measurements and theoretical predictions.

$W^{+/-}$ CROSS-SECTIONS AND Z TOO!

THE RHIC REVIEW

Protons · Sea-Quarks · Polarized Gluons · TSSAs · Heavy lons

Issue: 20	The World's Best Selling Newspaper	Est - 2000
First Edition		October 29, 2019

The end of an era – Final W^{+/-} asymmetries provide strong evidence for flavor symmetry

breaking in the light sea for the polarized sector.

The mystery continues to unfold - The A dependence of forward hadron TSSAs in p+A

collisions continues to fuel theo-

XKCD comics on page 10

Breaking News! First flavor tagged dijet Sivers asymmetry released for DNP. Details on page 23.

New inclusive jet and dijet measurements at $\sqrt{s} =$ 500 GeV push constraints on gluon helicity distributions to lower x – what does this mean for ΔG ?

$\Delta { m G}$ status circa ~2015

- Based on DSSV14 and includes PHENIX inclusive $\pi^0 \pi^+ \pi^-$ and STAR inclusive jets and forward π^0 at 200 and 62 GeV.
- ΔG saturates at ~10⁻³ and 70% of proton spin
- Uncertainties increase dramatically outside kinematic reach of existing data.
- Two approaches to reduce uncertainties:
 - 1) Measure correlation observables to help map out shape of $\Delta g(x)$.
 - 2) Measure asymmetries sensitive to lower x

Phys.Rev. D92, 094030 (2015)

200 GEV MID-RAPIDITY DIJETS

- Inclusive jets sample broad range of parton momentum fraction x.
- This limits constraints on the functional form of $\Delta g(x)$ and increases uncertainty at lower x.
- Dijets allow for reconstruction of the initial parton x₁ and x₂ at leading order.

$$x_{1,2} = \frac{1}{\sqrt{s}} \left(p_{T3} e^{\pm \eta_3} + p_{T4} e^{\pm \eta_4} \right)$$
$$|\cos \theta^*| = \tanh \left| \frac{\eta_3 - \eta_4}{2} \right|$$

200 GEV MID-RAPIDITY DIJET ALL

Phys.Rev. D95, 071103 (2017)

200 GEV FORWARD-RAPIDITY DIJET

Can push to smaller x by using endcap calorimeter in forward region.

200 GEV FORWARD-RAPIDITY DIJET

Can push to smaller x by using endcap calorimeter in forward region.

200 GEV FORWARD-RAPIDITY DIJET

Can push to smaller x by using endcap calorimeter in forward region.

200 GEV FORWARD-RAPIDITY DIJET ALL

- First forward jet analysis
- Utilized machine learning techniques to deal with dropping TPC efficiency
- Incorporated underlying event subtraction
- Asymmetries sample both low x gluons and high x quarks!

Phys. Rev. D 98 (2018) 32011

PAUSE ... FOR A THEORETICAL INTERLUDE

Monte Carlo sampling variant of the DSSV14 set of helicity parton densities
Daniel de Florian*
International Center for Advanced Studies (ICAS), UNSAM,
Campus Miguelete, 25 de Mayo y Francia (1650) Buenos Aires, Argentina
Gonzalo Agustín Lucero† and Rodolfo Sassot‡
Departamento de Física and IFIBA, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1 (1428) Buenos Aires, Argentina
Marco Stratmann[§] and Werner Vogelsang¶

Marco Stratmann[§] and Werner Vogelsang[¶] Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany

- New paper implements reweighting with STAR 200 GeV mid+forward rapidity dijets.
- Moderate increase of gluon polarization in the range 0.05 < x < 0.2 change is within uncertainty of the DSSV14 replicas.
- Sizable reduction of width of 1-sigma uncertainty band, especially for x > 0.2.

500 GEV MID-RAPIDITY INCLUSIVE AND DIJET A_{LL}

Measurements at higher √s access lower partonic x

$$\mathbf{x} \approx x_T e^{\pm \eta} = \frac{2p_T}{\sqrt{s}} e^{\pm \eta}$$

 Optimize R_{jet} = 0.5 to accommodate increased UE and pileup at higher center of mass energies

RUN12 510 GEV MID-RAPIDITY INCLUSIVE JET A_{ll}

- Excellent agreement with theoretical expectations
- Data-driven event-by-event UE subtraction developed for this result.

RUN 12 510 GEV MID-RAPIDITY INCLUSIVE JET A_{LL}

- Excellent agreement with theoretical expectations
- Data-driven event-by-event
 UE subtraction developed for this result.
- Reduced $x_T \sim 0.025$

$$x \approx x_T e^{\pm \eta} = \frac{2p_T}{\sqrt{s}} e^{\pm \eta}$$

Phys.Rev. D100 (2019) no.5 052005

RUN 12 510 GEV MID-RAPIDITY DIJET A_{ll}

Phys.Rev. D100 (2019) no.5 052005

RUN 13 510 GEV MID-RAPIDITY INCLUSIVE AND DIJET A_{LL}

INCLUSIVE JET

DIJET

Phys. Rev. D 93, 011501(R)

Excellent agreement between data and theory!

Phys. Rev. D **93**, 011501(R)

Phys. Rev. D 93, 011501(R)

PH*ENIX 510 GEV INCLUSIVE MIDRAPIDITY $\Pi^{+/-}$

Sensitive to the sign of $\Delta G~$ - $~A_{LL}^{+} > A_{LL}^{-}$

510 GEV FORWARD INCLUSIVE $\Pi^0 A_{11}$

- Sensitivities down to $x \sim 10^{-3}$!
- All theoretical curves use DSS FF

510 GEV FORWARD INCLUSIVE $\Pi^0 A_{11}$

- Sensitivities down to $x \sim 10^{-3}$!
- All theoretical curves use DSS FF

THE RHIC REVIEW

Protons •	Sea-Quarks · Polarized Gluons · TSSAs	 Heavy lons
Issue: 20	The World's Best Selling Newspaper	Est - 2000
First Edition		October 29, 2019

The end of an era – Final W^{+/-} asymmetries provide strong evidence for flavor symmetry

breaking in the light sea for the polarized sector.

The mystery continues to unfold – The A dependence of forward hadron TSSAs in p+A

collisions continues to fuel theoretical work.

XKCD comics on page 10

Breaking News! First flavor tagged dijet Sivers asymmetry released for DNP. Details on page 23.

New inclusive jet and dijet measurements at $\sqrt{s} =$ 500 GeV push constraints on gluon helicity distributions to lower x – what does this mean for ΔG ?

TRANSVERSE SINGLE SPIN ASYMMETRIES

 $A_N = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}$

- Collide transversely polarized proton with "unpolarized" proton beam.
- Count the # of hadrons that scatter left vs. right.
- Theoretically TSSAs are described by multi-parton correlators in a collinear twist-3 framework.

TRANSVERSE SINGLE SPIN ASYMMETRIES

- Replace unpolarized proton beam with ion beam.
- Count the *#* of hadrons that scatter left vs. right.
- In the case of forward scattering, a high x polarized parton will scatter from multiple low x partons, many likely to be gluons, before fragmenting. Leads naturally to the question - *How do TSSAs change in a nuclear environment?*
- Intense theoretical work has tried to answer this question by extending gluon saturation frameworks to include spin effects.
- Data from RHIC Run 15 p+p, p+Al and p+Au collisions will give us necessary experimental feedback.

Phys.Rev. D 74, 074018 (2006) Phys.Rev. D 84, 034019 (2011) Phys.Rev. D 86, 034028 (2012) Phys.Rev. D 94, 054012 (2016) Phys.Rev. D 95, 014008 (2017) Phys.Rev. D 99, 094012 (2019)

PH ENIX RUN 15 MIDRAPIDITY $\Pi^0 A_N$

- Central EMCal used for π^0 reconstruction.
- A_N in p+p is zero at the ~10⁻⁴ level at mid-rapidity.
- This is typical for mid-rapidity charged and neutral inclusive hadron asymmetries in p+p collisions.

- Use forward muon trackers (1.2 |η| < 2.4) to detect muons and reconstruct J/ψ.
- J/Psi production predominately from gg fusion at $\sqrt{s_{NN}}$ =200 GeV
- Probes gluon distributions in nuclei
- No clear A dependence only p+Au trends negative

- Use MuID to tag charged hadrons that stop in 3rd or 4th plane due to hadronic interactions.
- Equal parts pions and Kaons, 5% protons
- As expected, A_N increases with x_{F.}
- K⁻ and π asymmetries are opposite sign causing some cancelation for the negative hadron signal.

- Clear A dependence in azimuthal asymmetry of the yield.
- Fit is a function of A^{-α/3} motivated by the expectation (Phys.Rev.D 94, 054013) that the twist-3 FF should modify like A^{-α/3} for low momentum hadrons. Here <p_T> = 2.9 GeV.

Phys.Rev.Lett. 123 (2019) no.12, 122001

FORWARD $\Pi^0 A_N$

- Pions are reconstructed in the Forward Meson Spectrometer
- Asymmetries measured for a large X_F range 0.2-0.7.
- p+Au asymmetries are nearly as large as p+p asymmetries.
- No large A dependence observed.

• Neutrons detected in ZDCs at $|\eta| > 5.9$

- Clear A dependence
- Asymmetries increase with BBC veto no signals in either BBC. Points to a possible diffractive component?

THE RHIC REVIEW

Protons · Sea-Quarks · Polarized Gluons · TSSAs · Heavy lons

Issue: 20	The World's Best Selling Newspap	ber Est - 2000
First Edition		October 29, 2019
The end of an era	– Final W ^{+/-} Rre	eaking News! First

asymmetries provide strong evidence for flavor symmetry

collisions

fuel theo-

continues to

retical work.

XKCD comics on page 10

breaking in the light sea for the polarized sector.

flavor tagged dijet Sivers

asymmetry released for DNP. Details on page 23.

and dijet meas-The mystery continues to 500 GeV push unfold – The A dependence of constraints on forward hadron TSSAs in p+A gluon helicity distributions to lower x – *what*

for ΔG ?

New inclusive jet urements at $\sqrt{s} =$ Topology B Forward - Co does this mean

SIVERS EFFECT IN DIJET PRODUCTION

 $\left\langle \vec{S}_{proton} \cdot (\vec{P}_{proton} \times \vec{k}_T) \right\rangle$

SIVERS EFFECT IN DIJET PRODUCTION

$$\left\langle \vec{S}_{proton} \cdot (\vec{P}_{proton} \times \vec{k}_{T}) \right\rangle$$

OBSERVABLE IN DIJET PRODUCTION

- ϕ_b is di-jet bisector angle (the ray points to the tilt direction of the two jets)
- ζ is the opening angle of dijet in the transverse plane $\zeta > \pi$ when $\cos(\Phi_b) > 0$ $\zeta < \pi$ when $\cos(\Phi_b) < 0$

OBSERVABLE IN DIJET PRODUCTION

$$A = \frac{\langle \xi + \rangle - \langle \xi - \rangle}{P}$$

JET FLAVOR "TAGGING"

Tag associated jets to enhance the purities of u-quarks and d-quarks separately.

Data is divided into three groups:

- 1. Plus-tagging (Q > 0.25) : enhances the *u*-quark purity.
- 2. Minus-tagging (Q < -0.25): enhances the *d*-quark purity.
- 3. Zero-tagging (-0.25 < Q < 0.25) : u / d fractions are more balanced than the other two taggings.

Distribution of Q for Events taken by JetPatch2 Trigger (2012 embedding with Pythia6)

2012+2015 Data — Dijet Sivers Asymmetry

- The polarized sea is not flavor symmetric. We can definitively say that $\Delta \bar{u} > 0$ and $\Delta \bar{d} < 0$ in the valence region. This asymmetry is opposite to that of the unpolarized sea.
- The gluon contribution to the proton spin is positive and large $\sim 60\%$ in the region 0.05 < x < 0.2. This result is supported by the recent inclusion of the 200 GeV dijet A_{LL}. The community eagerly awaits the inclusion of the 510 GeV pion, jet and dijet asymmetries into the existing global analyses.
- TSSA are extremely small at mid-rapidity but grow substantially at forward rapidity for a variety of observables charged and neutral hadrons as well as neutrons. A substantial A dependence is observed for charged hadrons and neutrons but not for neutral pions. The story continues to unfold ...
- The first flavor tagged dijet asymmetry has yielded significant asymmetries that flip with charge sign.
 Work continues to make the connection between dijet opening angle and k_T more robust.
- There is a lot of fabulous physics that I wasn't able to discuss lets talk more over lunch.

- The polarized sea is not flavor symmetric. We can definitively say that $\Delta \overline{u} > 0$ and $\Delta \overline{d} < 0$ in the valence region. This asymmetry is opposite to that of the unpolarized sea.
- The gluon contribution to the proton spin is positive and large $\sim 60\%$ in the region 0.05 < x < 0.2. This result is supported by the recent inclusion of the 200 GeV dijet A_{LL}. The community eagerly awaits the inclusion of the 510 GeV pion, jet and dijet asymmetries into the existing global analyses.
- TSSA are extremely small at mid-rapidity but grow substantially at forward rapidity for a variety of observables – charged and neutral hadrons as well as neutrons. A substantial A dependence is observed for charged hadrons and neutrons but not for neutral pions. The story continues to unfold ...
- The first flavor tagged dijet asymmetry has yielded significant asymmetries that flip with charge sign.
 Work continues to make the connection between dijet opening angle and k_T more robust.
- There is a lot of fabulous physics that I wasn't able to discuss lets talk more over lunch.

- The polarized sea is not flavor symmetric. We can definitively say that $\Delta \bar{u} > 0$ and $\Delta \bar{d} < 0$ in the valence region. This asymmetry is opposite to that of the unpolarized sea.
- The gluon contribution to the proton spin is positive and large ~60% in the region 0.05 < x < 0.2. This result is supported by the recent inclusion of the 200 GeV dijet A_{LL}. The community eagerly awaits the inclusion of the 510 GeV pion, jet and dijet asymmetries into the existing global analyses.
- TSSA are extremely small at mid-rapidity but grow substantially at forward rapidity for a variety of observables – charged and neutral hadrons as well as neutrons. A substantial A dependence is observed for charged hadrons and neutrons but not for neutral pions. The story continues to unfold ...
- The first flavor tagged dijet asymmetry has yielded significant asymmetries that flip with charge sign.
 Work continues to make the connection between dijet opening angle and k_T more robust.
- There is a lot of fabulous physics that I wasn't able to discuss lets talk more over lunch.

- The polarized sea is not flavor symmetric. We can definitively say that $\Delta \bar{u} > 0$ and $\Delta \bar{d} < 0$ in the valence region. This asymmetry is opposite to that of the unpolarized sea.
- The gluon contribution to the proton spin is positive and large $\sim 60\%$ in the region 0.05 < x < 0.2. This result is supported by the recent inclusion of the 200 GeV dijet A_{LL}. The community eagerly awaits the inclusion of the 510 GeV pion, jet and dijet asymmetries into the existing global analyses.
- TSSA are extremely small at mid-rapidity but grow substantially at forward rapidity for a variety of observables – charged and neutral hadrons as well as neutrons. A substantial A dependence is observed for charged hadrons and neutrons but not for neutral pions. The story continues to unfold ...
- The first flavor tagged dijet asymmetry has yielded significant asymmetries that flip with charge sign.
 Work continues to make the connection between dijet opening angle and k_T more robust.
- There is a lot of fabulous physics that I wasn't able to discuss lets talk more over lunch.

- The polarized sea is not flavor symmetric. We can definitively say that $\Delta \bar{u} > 0$ and $\Delta \bar{d} < 0$ in the valence region. This asymmetry is opposite to that of the unpolarized sea.
- The gluon contribution to the proton spin is positive and large $\sim 60\%$ in the region 0.05 < x < 0.2. This result is supported by the recent inclusion of the 200 GeV dijet A_{LL}. The community eagerly awaits the inclusion of the 510 GeV pion, jet and dijet asymmetries into the existing global analyses.
- TSSA are extremely small at mid-rapidity but grow substantially at forward rapidity for a variety of observables charged and neutral hadrons as well as neutrons. A substantial A dependence is observed for charged hadrons and neutrons but not for neutral pions. The story continues to unfold ...
- The first flavor tagged dijet asymmetry has yielded significant asymmetries that flip with charge sign.
 Work continues to make the connection between dijet opening angle and k_T more robust.
- There is a lot of fabulous physics that I wasn't able to discuss lets talk more over lunch.

- The polarized sea is not flavor symmetric. We can definitively say that $\Delta \bar{u} > 0$ and $\Delta \bar{d} < 0$ in the valence region. This asymmetry is opposite to that of the unpolarized sea.
- The gluon contribution to the proton spin is positive and large $\sim 60\%$ in the region 0.05 < x < 0.2. This result is supported by the recent inclusion of the 200 GeV dijet A_{LL}. The community eagerly awaits the inclusion of the 510 GeV pion, jet and dijet asymmetries into the existing global analyses.
- TSSA are extremely small at mid-rapidity but grow substantially at forward rapidity for a variety of observables – charged and neutral hadrons as well as neutrons. A substantial A dependence is observed for charged hadrons and neutrons but not for neutral pions. The story continues to unfold ...
- The first flavor tagged dijet asymmetry has yielded significant asymmetries that flip with charge sign. Work continues to make the connection between dijet opening angle and k_T more robust.
- There is a lot of fabulous physics that I wasn't able to discuss lets talk more over lunch.

- The polarized sea is not flavor symmetric. We can definitively say that $\Delta \bar{u} > 0$ and $\Delta \bar{d} < 0$ in the valence region. This asymmetry is opposite to that of the unpolarized sea.
- The gluon contribution to the proton spin is positive and large $\sim 60\%$ in the region 0.05 < x < 0.2. This result is supported by the recent inclusion of the 200 GeV dijet A_{LL}. The community eagerly awaits the inclusion of the 510 GeV pion, jet and dijet asymmetries into the existing global analyses.
- TSSA are extremely small at mid-rapidity but grow substantially at forward rapidity for a variety of observables charged and neutral hadrons as well as neutrons. A substantial A dependence is observed for charged hadrons and neutrons but not for neutral pions. The story continues to unfold ...
- The first flavor tagged dijet asymmetry has yielded significant asymmetries that flip with charge sign.
 Work continues to make the connection between dijet opening angle and k_T more robust.
- There is a lot of fabulous physics that I wasn't able to discuss lets talk more over lunch.

SO YOU WANT MORE?

TRANSVERSITY

- QUARK POLARIZATION ALONG THE SPIN OF A TRANSVERSELY POLARIZED PROTON
- Distributions are not well constrained due to chiral-odd nature.
- Must couple to another chiral-odd function, typically a fragmentation function.
- May be a collinear or a transversemomentum-dependent function.

LAMBDA TRANSVESE SPIN TRANSFER D_{TT}

$$D_{TT} = \frac{d\sigma^{p\uparrow p \to \Lambda\uparrow X} - d\sigma^{p\uparrow p \to \Lambda\downarrow X}}{d\sigma^{p\uparrow p \to \Lambda\uparrow X} + d\sigma^{p\uparrow p \to \Lambda\downarrow X}} = \frac{d\Delta_T\sigma}{d\sigma}$$

If the Λ spin direction is highly correlated with the strange constituent quark spin orientation, $|\Lambda\rangle = (ud)_{00}s^{\uparrow}$, then D_{TT} is sensitive to both the strange transversity PDF and the transversely polarized Λ FF.

- First extraction of D_{TT} from 18 pb⁻¹ in $\sqrt{s} = 200$ GeV p+p collisions.
- Lambda asymmetries are consistent with model predictions by Xu, Liang and Sichtermann, PRD 73 (2006) 077503
- Lambda asymmetries are also consistent with zero.

TRANSVERSITY

Interference Fragmentation Functions

Correlation between spin of transversely polarized quark and momentum cross-product of dihadron pair.

Collins Fragmentation Functions

Correlation between spin of transversely polarized quark and transverse momentum kick given to fragmentation hadron.

TRANSVERSITY \otimes IFF

- First significant transversity signal measured in proton-proton collisions.
- Despite different scales asymmetries are very similar in 200 and 500 GeV when <x_T> is similar.
- STAR data are well described by IFF theoretical calculations incorporating SIDIS and e+e- data.
- Recent global analysis by Radici and Bacchetta (PRL 120, 192001) shows significant reduction in uncertainty for u quark transversity distributions from STAR data.

Phys.Lett. B780 (2018) 332

TRANSVERSITY \otimes COLLINS FF

Phys. Rev. **D 97** (2018) 32004

- Complementary TMD channel to the collinear dihadron channel.
- Again asymmetries are very similar in 200 and 500 GeV.
- Additional statistics for both 200 and 500 GeV are on tape!
- Provides input on TMD evolution, which cannot be calculated fully from first principles.

- 200 and 500 GeV tell the same story.
- Shape of j_T changes with z.
- Peak of distribution moves towards higher <j_T> as z increases.
- Hadron j_T is independent of initial state transverse momentum.

LEPTON DECAY KINEMATICS

W is Left handed
V /V R/L Handed (99.9999%)
lepton decay direction, in the W rest frame, is set by

conservation of angular momentum

 Lepton momentum aligned (antialigned) with W⁻ (W⁺) momentum

ź

Jet-Beam Association

To figure out the "parton flow" from beam to jets, a jet-beam association is performed.

We assume the forward (backward) jet is more likely fragmented from the parton that comes out of +z (-z) beam.

Association efficiency for Events taken by JetPatch2 Trigger

Association efficiency for Events taken by JetPatch1 Trigger

* The efficiency represents how often we get the association right.

* The error bar/band represents the statistical error.