Nuclear PDFs and the Impact of an Electron-Ion Collider

Jacob Ethier

EINN 2019 Workshop "The Road to an Electron-Ion Collider" October 30th, 2019

- Motivation
- Nuclear PDFs from NNPDF (R. Abdul Khalek, JJE, and J. Rojo)

 \rightarrow nNNPDF1.0 – Monte Carlo approach to nPDFs using NNs

- → Towards nNNPDF2.0 Impact of CC DIS + W/Z production at LHC
- \rightarrow Impact of EIC pseudo-data
- Summary and outlook

Motivation

• Deep-inelastic scattering of leptons from nuclei cannot be described by free nucleon formalism (EMC effect), e.g.

DIS structure functions: $F_2^A \neq ZF_2^p + (A - Z)F_2^n$

• Parton structure is modified in bound systems

• Mechanisms that originate nuclear effects still not well understood

- Empirical determination of in-medium modifications to parton structure
- Relevant for interpretation of heavy ion collisions at RHIC and LHC
- Relies on collinear factorization formalism analogous to free proton PDF fits, e.g.

$$d\sigma^A(x,Q^2) \simeq \sum_f \int_x^{M_A/M} \frac{d\xi}{\xi} f^A(\frac{x}{\xi},Q^2) d\hat{\sigma}_f(\xi,Q^2)$$

- Empirical determination of in-medium modifications to parton structure
- Relevant for interpretation of heavy ion collisions at RHIC and LHC
- Relies on collinear factorization formalism analogous to free proton PDF fits, e.g.

$$d\sigma^A(x,Q^2) \simeq \sum_f \int_x^{M_A/M} \frac{d\xi}{\xi} f^A(\frac{x}{\xi},Q^2) d\hat{\sigma}_f(\xi,Q^2)$$

Parton distribution function (PDF) Hard scattering of nucleus with atomic mass *A*

- Empirical determination of in-medium modifications to parton structure
- Relevant for interpretation of heavy ion collisions at RHIC and LHC
- Relies on collinear factorization formalism analogous to free proton PDF fits, e.g.

$$d\sigma^{A}(x,Q^{2}) \simeq \sum_{f} \int_{x}^{M_{A}/M} \frac{d\xi}{\xi} f^{A}(\frac{x}{\xi},Q^{2}) d\hat{\sigma}_{f}(\xi,Q^{2})$$

Parton distribution function (PDF) Hard scattering

of nucleus with atomic mass A

• Scattering from nuclei treated as incoherent from single bound nucleon

$$d\sigma^A(x,Q^2) \simeq Z d\sigma^{p/A} + (A-Z) d\sigma^{n/A}$$
$$d\sigma^{N/A}(x,Q^2) \simeq \sum_f \int_x^1 \frac{d\xi}{\xi} f^{N/A}(\frac{x}{\xi},Q^2) d\hat{\sigma}_f(\xi,Q^2)$$

• nPDFs are parameterized and fitted to global lepton-nucleus and hadronnucleus scattering measurements

• Can reveal onset of non-linear evolution effects at low x and Q^2

 \rightarrow Enhancement for heavier nuclei – saturation region expected to begin at larger x

• Effect given in ratio of nuclear to proton PDFs:

• Precise determination of nuclear PDFs is highly relevant for Electron-Ion Collider

nNNPDF1.0 Analysis

- Includes all available neutral current DIS data from CERN, SLAC, and FNAL experiments
 - → Kinematic cuts: $W^2 > 12.5 \text{ GeV}^2$

 $Q^2>3.5~{\rm GeV}^2$

- Significant range in atomic mass values (A from 2 to 208)
- 451 total data points

Experiment	A_1/A_2	$\mathrm{N}_{\mathrm{dat}}$
SLAC E-139	$^{4}\mathrm{He}/^{2}\mathrm{D}$	3
NMC 95, re.	$^{4}\mathrm{He}/^{2}\mathrm{D}$	13
NMC 95	$^{6}\mathrm{Li}/^{2}\mathrm{D}$	12
SLAC E-139	$^{9}\mathrm{Be}/^{2}\mathrm{D}$	3
NMC 96	$^{9}\mathrm{Be}/^{12}\mathrm{C}$	14
EMC 88, EMC 90	$^{12}{\rm C}/^{2}{\rm D}$	12
SLAC E-139	$^{12}C/^{2}D$	2
NMC 95, NMC 95, re.	${ m ^{12}C/^{2}D}$	26
FNAL E665	$^{12}C/^{2}D$	3
NMC 95, re.	$^{12}{\rm C}/^{6}{\rm Li}$	9
BCDMS 85	$^{14}N/^{2}D$	9
SLAC E-139	$^{27}\mathrm{Al}/^{2}\mathrm{D}$	3
NMC 96	$^{27}Al/^{12}C$	14
SLAC E-139	$^{40}\mathrm{Ca}/^{2}\mathrm{D}$	2
NMC 95, re.	$^{40}\mathrm{Ca}/^{2}\mathrm{D}$	12
EMC 90	$^{40}\mathrm{Ca}/^{2}\mathrm{D}$	3
FNAL E665	$^{40}\mathrm{Ca}/^{2}\mathrm{D}$	3
NMC 95, re.	$^{40}\mathrm{Ca}/^{6}\mathrm{Li}$	9
NMC 96	$ m ^{40}Ca/^{12}C$	23
EMC 87	$^{56}\mathrm{Fe}/^{2}\mathrm{D}$	58
SLAC E-139	$^{56}\mathrm{Fe}/^{2}\mathrm{D}$	8
NMC 96	${}^{56}{ m Fe}/{}^{12}{ m C}$	14
BCDMS 85 , BCDMS 87	$^{56}\mathrm{Fe}/^{2}\mathrm{D}$	16
EMC 88, EMC 93	$^{64}\mathrm{Cu}/^{2}\mathrm{D}$	27
SLAC E-139	$^{108}\mathrm{Ag}/^{2}\mathrm{D}$	2
EMC 88	$^{119}\mathrm{Sn}/^{2}\mathrm{D}$	8
NMC 96, Q^2 dependence	$^{119}Sn/^{12}C$	119
FNAL E665	$^{131}{ m Xe}/^{2}{ m D}$	4
SLAC E-139	$^{197}\mathrm{Au}/^{2}\mathrm{D}$	3
FNAL E665	$^{208}\text{Pb}/^{2}\text{D}$	3
NMC 96	$^{208}\mathrm{Pb}/^{12}\mathrm{C}$	14
Total		451

nPDF Parameterization

- Single NN with architecture 3-25-3
- Input scale: $Q_0 = 1 \text{ GeV}$
- PDFs parameterized with NN output multiplied by preprocessing function

$$x\Sigma(x, Q_0, A) = x^{-\alpha_{\Sigma}} (1 - x)^{\beta_{\sigma}} \xi_1^{(3)}(x, A)$$

$$xT_8(x, Q_0, A) = x^{-\alpha_{T_8}} (1 - x)^{\beta_{T_8}} \xi_2^{(3)}(x, A)$$

$$xg(x, Q_0, A) = B_g x^{-\alpha_g} (1 - x)^{\beta_g} \xi_3^{(3)}(x, A)$$

• Exponents treated as free parameters

- Momentum Sum Rule: $\int_0^1 dx x (\Sigma(x,A) + g(x,A)) = 1 \rightarrow B_g = \frac{1 \int_0^1 dx x \Sigma(x,A)}{\int_0^1 dx x g(x,A)}$
- Parameters optimized by stochastic gradient descent in TensorFlow (open-source ML software library)

• Minimizing the cost function:

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{\text{dat}}} \left(R_{i}^{(\text{exp})} - R_{i}^{(\text{th})}(\{f_{m}\}) \right) (\text{cov}_{t_{0}})_{ij}^{-1} \left(R_{j}^{(\text{exp})} - R_{j}^{(\text{th})}(\{f_{m}\}) \right)$$
$$+ \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l},Q_{0},A) - f_{m}^{(p+n)/2}(x_{l},Q_{0}) \right)^{2}$$

• Minimizing the cost function:

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{\text{dat}}} \left(R_{i}^{(\text{exp})} - R_{i}^{(\text{th})}(\{f_{m}\}) \right) (\text{cov}_{t_{0}})_{ij}^{-1} \left(R_{j}^{(\text{exp})} - R_{j}^{(\text{th})}(\{f_{m}\}) \right)$$
$$+ \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l},Q_{0},A) - f_{m}^{(p+n)/2}(x_{l},Q_{0}) \right)^{2}$$

Artificial data replicas - experimental measurements smeared by Gaussian

$$\mathcal{O}_{i}^{(\text{art})(k)} = S_{i,N}^{(k)} \mathcal{O}_{i}^{(\text{exp})} \left(1 + r_{i}^{(k)} \sigma_{i}^{(\text{stat})} + \sum_{\alpha=1}^{N_{\text{sys}}} r_{i,\alpha}^{(k)} \sigma_{i,\alpha}^{(\text{sys})} \right) , \quad k = 1, \dots, N_{\text{rep}}$$

• Minimizing the cost function:

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{\text{dat}}} \left(R_{i}^{(\text{exp})} - R_{i}^{(\text{th})}(\{f_{m}\}) \right) (\text{cov}_{t_{0}})_{ij}^{-1} \left(R_{j}^{(\text{exp})} - R_{j}^{(\text{th})}(\{f_{m}\}) \right)$$
$$+ \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l},Q_{0},A) - f_{m}^{(p+n)/2}(x_{l},Q_{0}) \right)^{2}$$

Artificial data replicas – experimental measurements smeared by Gaussian

Theoretical predictions (functions of the parameterized PDFs)

• Minimizing the cost function:

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{\text{dat}}} \left(R_{i}^{(\text{exp})} - R_{i}^{(\text{th})}(\{f_{m}\}) \right) \left(\operatorname{cov}_{t_{0}} \right)_{ij}^{-1} \left(R_{j}^{(\text{exp})} - R_{j}^{(\text{th})}(\{f_{m}\}) \right)$$
$$+ \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l},Q_{0},A) - f_{m}^{(p+n)/2}(x_{l},Q_{0}) \right)^{2}$$

Artificial data replicas - experimental measurements smeared by Gaussian

Theoretical predictions (functions of the parameterized PDFs)

Covariance matrix – encodes all uncorrelated and correlated experimental uncertainties N_{add}

$$\begin{aligned} (\operatorname{cov}_{t_0})_{ij}^{(\exp)} &\equiv \left(\sigma_i^{(\operatorname{stat})} R_i^{(\exp)}\right)^2 \delta_{ij} + \left(\sum_{\alpha=1}^{\operatorname{add}} \sigma_{i,\alpha}^{(\operatorname{sys},a)} \sigma_{j,\alpha}^{(\operatorname{sys},a)} R_i^{(\exp)} R_j^{(\exp)} + \sum_{\beta=1}^{N_{\operatorname{mult}}} \sigma_{i,\beta}^{(\operatorname{sys},m)} \sigma_{j,\beta}^{(\operatorname{sys},m)} R_i^{(\operatorname{th},0)} R_j^{(\operatorname{th},0)} \right) \end{aligned}$$

• Minimizing the cost function:

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{\text{dat}}} \left(R_{i}^{(\text{exp})} - R_{i}^{(\text{th})}(\{f_{m}\}) \right) \left(\operatorname{cov}_{t_{0}} \right)_{ij}^{-1} \left(R_{j}^{(\text{exp})} - R_{j}^{(\text{th})}(\{f_{m}\}) \right)$$
$$+ \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l},Q_{0},A) - f_{m}^{(p+n)/2}(x_{l},Q_{0}) \right)^{2}$$

Artificial data replicas - experimental measurements smeared by Gaussian

Theoretical predictions (functions of the parameterized PDFs)

Covariance matrix – encodes all uncorrelated and correlated experimental uncertainties N_{add}

$$(\operatorname{cov}_{t_0})_{ij}^{(\exp)} \equiv \left(\sigma_i^{(\operatorname{stat})} R_i^{(\exp)}\right)^2 \delta_{ij} + \left(\sum_{\alpha=1}^{r_{\operatorname{add}}} \sigma_{i,\alpha}^{(\operatorname{sys},a)} \sigma_{j,\alpha}^{(\operatorname{sys},a)} R_i^{(\exp)} R_j^{(\exp)}\right)$$

t₀ prescription: multiply correlated multiplicative uncertainties by central theory values from previous fit iterations (iterated until convergence)

$$+\sum_{\beta=1}^{N_{\text{mult}}} \sigma_{i,\beta}^{(\text{sys,m})} \sigma_{j,\beta}^{(\text{sys,m})} R_i^{(\text{th},0)} R_j^{(\text{th},0)} \right)$$

• Minimizing the cost function:

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{\text{dat}}} \left(R_{i}^{(\text{exp})} - R_{i}^{(\text{th})}(\{f_{m}\}) \right) \left(\operatorname{cov}_{t_{0}} \right)_{ij}^{-1} \left(R_{j}^{(\text{exp})} - R_{j}^{(\text{th})}(\{f_{m}\}) \right)$$
$$+ \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l},Q_{0},A) - f_{m}^{(p+n)/2}(x_{l},Q_{0}) \right)^{2}$$

Artificial data replicas – experimental measurements smeared by Gaussian

Theoretical predictions (functions of the parameterized PDFs)

Covariance matrix – encodes all uncorrelated and correlated experimental uncertainties

• Many fits performed to obtain representative MC sample distribution

$$E[\mathcal{O}(\vec{a})] = \sum_{k} w_k \mathcal{O}(\vec{a}_k) \qquad V[\mathcal{O}(\vec{a})] = \sum_{k} w_k (\mathcal{O}(\vec{a}_k) - E[\mathcal{O}])^2$$

• Fits are cross-validated to prevent over-fitting

• Minimizing the cost function:

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{\text{dat}}} \left(R_{i}^{(\text{exp})} - R_{i}^{(\text{th})}(\{f_{m}\}) \right) (\text{cov}_{t_{0}})_{ij}^{-1} \left(R_{j}^{(\text{exp})} - R_{j}^{(\text{th})}(\{f_{m}\}) \right) + \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l},Q_{0},A) - f_{m}^{(p+n)/2}(x_{l},Q_{0}) \right)^{2}$$

Boundary condition (imposed for x from 10^{-3} to 0.7)

• Minimizing the cost function:

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{\text{dat}}} \left(R_{i}^{(\text{exp})} - R_{i}^{(\text{th})}(\{f_{m}\}) \right) (\text{cov}_{t_{0}})_{ij}^{-1} \left(R_{j}^{(\text{exp})} - R_{j}^{(\text{th})}(\{f_{m}\}) \right) + \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l},Q_{0},A) - f_{m}^{(p+n)/2}(x_{l},Q_{0}) \right)^{2}$$

Boundary condition (imposed for x from 10^{-3} to 0.7)

 \rightarrow Free nucleon PDFs must be reproduced at A=1

$$f(x, Q, A = 1) = \frac{1}{2} \left[f_p(x, Q^2) + f_n(x, Q^2) \right]$$

- → NNPDF3.1 proton PDF fits are used as baseline (consistent methodology and theoretical assumptions)
- → Central values and *uncertainties* reproduced at minimization level "simultaneous" fit of proton and nuclear PDFs
 - \rightarrow Correlations from proton PDFs are accounted for!

Uncertainties computed as 90% CL range

Only linear combination of quark singlet and octet distributions constrained by NC DIS

$$\Sigma = \sum_{i}^{n_f} (f_i + \bar{f}_i) = \sum_{i}^{n_f} f_i^+$$
$$T_8 = u^+ + d^+ - 2s^+$$

Uncertainties computed as 90% CL range

Only linear combination of quark singlet and octet distributions constrained by NC DIS

$$\Sigma = \sum_{i}^{n_f} (f_i + \bar{f}_i) = \sum_{i}^{n_f} f_i^+$$
$$T_8 = u^+ + d^+ - 2s^+$$

NNPDF3.1 central value and uncertainties reproduced

Uncertainties computed as 90% CL range

Only linear combination of quark singlet and octet distributions constrained by NC DIS

$$\Sigma = \sum_{i}^{n_f} (f_i + \bar{f}_i) = \sum_{i}^{n_f} f_i^+$$
$$T_8 = u^+ + d^+ - 2s^+$$

Increasing uncertainties with A – effect of boundary condition

Ratio to A=1 result – correlations between nPDFs included

$$R_f^{(k)} = \frac{f^{(N/A)(k)}(x, Q^2, A)}{f^{(N)(k)}(x, Q^2)}$$

Ratio to A=1 result – $\Sigma + \frac{1}{4}T_8$ 1.2correlations between nPDFs $f^{(N/A)}/f^N$ included ⁴He 0.8 $R_f^{(k)} = \frac{f^{(N/A)(k)}(x, Q^2, A)}{f^{(N)(k)}(x, Q^2)}$ ⁶⁴Cu 208 Pb 0.6 3 $Q^2 = 10 \text{ GeV}^2$ g $f^{(N/A)}/f^N$ Nuclear effects visible in 2quark combination – 1 negligible for A=4 0 -10.1 0.3 0.5 0.7 0.9 10^{-3} 0.01 0.1

 \mathcal{X}

 \mathcal{X}

Ratio to A=1 result – correlations between nPDFs included

$$R_f^{(k)} = \frac{f^{(N/A)(k)}(x, Q^2, A)}{f^{(N)(k)}(x, Q^2)}$$

Nuclear effects visible in quark combination – negligible for A=4

Larger uncertainties for gluon distribution – consistent with unity

Nuclear PDFs

All distributions normalized by nNNPDF1.0 A=1 distribution

90% CL computed with Hessian method for nCTEQ and EPPS uncertainties

Significant differences in uncertainties

Nuclear PDFs

Can test other boundary conditions – NNPDF3.0+LHCb PDF set with smaller uncertainties at low *x*

Remarkable impact from boundary condition choice – proton PDF constraints relevant for low-A nPDF extraction!

Impact of the EIC

- Analysis of EIC pseudodata extended kinematic coverage
- Two scenarios: low energy (5 GeV) vs high energy (20 GeV) electron beam

Scenario	A	E_e	E_A/A	$Q_{ m max}^2$	x_{\min}	$N_{\rm dat}$	
eRHIC_5x50C	12	$5 \mathrm{GeV}$	$50 {\rm GeV}$	$440 \ \mathrm{GeV^2}$	0.003	50	
$eRHIC_5x75C$	12	$5~{ m GeV}$	$75 {\rm GeV}$	$440 \ {\rm GeV^2}$	0.002	57	•
$eRHIC_5x100C$	12	$5~{ m GeV}$	$100 { m ~GeV}$	$780 \ { m GeV^2}$	0.001	64	
eRHIC_5x50Au	197	$5~{ m GeV}$	$50~{\rm GeV}$	$440 \ {\rm GeV^2}$	0.003	50	
eRHIC_5x75Au	197	$5~{ m GeV}$	$75 {\rm GeV}$	$440 \ {\rm GeV^2}$	0.002	57	
eRHIC_5x100Au	197	$5~{ m GeV}$	$100~{\rm GeV}$	$780 \ { m GeV^2}$	0.001	64	
eRHIC_20x50C	12	$20 { m GeV}$	$50 \mathrm{GeV}$	$780 \ { m GeV}^2$	0.0008	75	•
$eRHIC_20x75C$	12	$20 { m GeV}$	$75 {\rm GeV}$	$780 \ { m GeV^2}$	0.0005	79	
eRHIC_20x100C	12	$20 { m GeV}$	$100 { m ~GeV}$	$780 \ { m GeV^2}$	0.0003	82	
eRHIC_20x50Au	197	$20 { m GeV}$	$50 {\rm GeV}$	$780 \ { m GeV^2}$	0.0008	75	
eRHIC_20x75Au	197	$20 { m GeV}$	$75 {\rm GeV}$	$780 \ { m GeV^2}$	0.0005	79	
$eRHIC_20x100Au$	197	$20 { m GeV}$	$100~{\rm GeV}$	$780 \ { m GeV^2}$	0.0003	82	

 \mathcal{X}

- Pseudodata constructed with nNNPDF1.0 PDF sets for carbon and gold nuclei
- Uncertainty projectionsfrom analysis of E.C.Aschenaur et al.[arXiv:1708.05654]

Impact of the EIC

Significant reduction of nPDF uncertainties at low-*x* for large A – particularly for higher energy option

Towards nNNPDF2.0

• Experimental data:

 \rightarrow CC DIS data from CHORUS (Pb) & NuTeV (Fe)

- \rightarrow W/Z production from LHC
- Methodology:

→ Positivity constraints (!): $\chi^2 \to \chi^2 + \lambda \max\left(0, -\mathcal{O}(x, Q^2)\right)$

where observables O (F2, cross-sections, etc) computed for grid in x and Q^2

- → Boundary condition: NNPDF3.1 without heavy nuclear target data
- \rightarrow Valence sum rules

Results on remaining slides are **PRELIMINARY** Based on 100 replica fit

Dataset	χ^2	N _{data}	χ^2/N_{data}
nNMCALC	4.991	14	0.357
nNMCBEC	3.784	14	0.27
nNMCCAC	10.119	23	0.44
nNMCCALI	2.119	9	0.235
nNMCCLI	10.025	9	1.114
nNMCFEC	9.511	14	0.679
nNMCPBC	13.251	14	0.946
nNMCSNC	70.293	119	0.591
nBCDMSFED	49.685	16	3.105
nBCDMSND	24.01	9	2.668
nSLACAGD	1.366	2	0.683
nSLACALD	2.436	3	0.812
nSLACAUD	3.852	3	1.284
nSLACBED	5.29	3	1.763
nSLACCAD	2.011	2	1.006
nSLACCD	0.573	2	0.287
nSLACFED	19.97	8	2.496
nSLACHED	1.741	3	0.58
nNMCCAD	21.064	12	1.755
nNMCCD	56.053	26	2.156
nNMCLID	13.622	12	1.135
nNMCHED	14.537	13	1.118
nEMCCAD	4.212	3	1.404
nEMCCD	14.495	12	1.208
nEMCCUD	16.476	27	0.61
nEMCFED	53.479	58	0.922
nEMCSND	17.944	8	2.243
nFNALCD	2.584	3	0.861
nFNALCAD	3.649	3	1.216
nFNALPBD	6.895	3	2.298
nFNALXED	1.483	4	0.371
CHORUSNBPb	376.367	423	0.89
CHORUSNUPb	419.117	423	0.991
NTVNUDMNFe	8.627	39	0.221
NTVNBDMNFe	26.467	37	0.715
Total:	1292.098	1373	0.941

• Excellent agreement with CC data (chi-squareds similar to proton fits)

	Dataset	χ^2	$\overline{N_{data}}$	χ^2/N_{data}
ĺ	nNMCALC	4.991	14	0.357
	nNMCBEC	3.784	14	0.27
ĺ	nNMCCAC	10.119	23	0.44
	nNMCCALI	2.119	9	0.235
	nNMCCLI	10.025	9	1.114
	nNMCFEC	9.511	14	0.679
	nNMCPBC	13.251	14	0.946
	nNMCSNC	70.293	119	0.591
	nBCDMSFED	49.685	16	3.105
	nBCDMSND	24.01	9	2.668
	nSLACAGD	1.366	2	0.683
	nSLACALD	2.436	3	0.812
	nSLACAUD	3.852	3	1.284
	nSLACBED	5.29	3	1.763
	nSLACCAD	2.011	2	1.006
	nSLACCD	0.573	2	0.287
	nSLACFED	19.97	8	2.496
	nSLACHED	1.741	3	0.58
	nNMCCAD	21.064	12	1.755
	nNMCCD	56.053	26	2.156
	nNMCLID	13.622	12	1.135
	nNMCHED	14.537	13	1.118
	nEMCCAD	4.212	3	1.404
	nEMCCD	14.495	12	1.208
	nEMCCUD	16.476	27	0.61
	nEMCFED	53.479	58	0.922
	nEMCSND	17.944	8	2.243
	nFNALCD	2.584	3	0.861
	nFNALCAD	3.649	3	1.216
	nFNALPBD	6.895	3	2.298
	nFNALXED	1.483	4	0.371
	CHORUSNBPb	376.367	423	0.89
ĺ	CHORUSNUPb	419.117	423	0.991
	NTVNUDMNFe	8.627	39	0.221
	NTVNBDMNFe	26.467	37	0.715
	Total:	1292.098	1373	0.941

CHORUSNBPb	376.367	423	0.89
CHORUSNUPb	419.117	423	0.991
NTVNUDMNFe	8.627	39	0.221
NTVNBDMNFe	26.467	37	0.715

-			•			Deterret	. 2	λŢ	2/11
ר ר	NNPDF2.0	Preli	mina	rv Res	ants	Dataset	χ^{-}	N _{data}	$\frac{\chi^2/N_{data}}{0.257}$
						mNMCALC	4.991	14	0.337
						mNMCGAC	3.784	14	0.27
	Eventilent erree		10.119	23	0.44				
•	Excellent agree	ment with	i CC da	ta (cni-squ	areas	mNMCCALI 	2.119	9	0.233
	similar to proto	n fits)					10.025	9	1.114
	similar to proto		9.011	14	0.079				
						nNMCFBC	13.201 70.202	14	0.940
ſ	» PCDMSEED	40.685	16	2 105		nPCDMSEED	10.295	16	2 105
	IIDCDM5FED	49.000	10	0.100		ndCDMSFED	49.085	10 	2.668
-		λ.		$\mathbf{O}_{\mathbf{A}}(\mathbf{O}_{\mathbf{A}})$	_	nSLACACD	1 266	9 0	2.000
		nN	INPDFI	.0:(0.6)		nSLACALD	2.300	2	0.000
						nSLACAUD	2.450	3	1.284
•	Possible CC and	d NC tens	ion?			nSLACBED	5.002	<u> </u>	1.204
						nSLACCAD	2 011	2	1.705
_						nSLACCD	0.573	2	$\frac{1.000}{0.287}$
	nSLACFED	19.97	8	2.496	┟┥┥┙	nSLACFED	19.97	8	2.496
L					J. L	nSLACHED	1.741	3	0.58
				(1.38)		nNMCCAD	21.064	12	1.755
				(1.50)		nNMCCD	56.053	26	2.156
						nNMCLID	13.622	12	1.135
						nNMCHED	14.537	13	1.118
-					-	nEMCCAD	4.212	3	1.404
	nFNALPBD	6.895	3	2.298		nEMCCD	14.495	12	1.208
L		0.000			N	nEMCCUD	16.476	27	0.61
				(1.66)		nEMCFED	53.479	58	0.922
				(1.00)		nEMCSND	17.944	8	2.243
						nFNALCD	2.584	3	0.861
						nFNALCAD	3.649	3	1.216
_					_ N	nFNALPBD	6.895	3	2.298
	CHORUSNBPb	376.367	423	0.89		nFNALXED	1.483	4	0.371
	CHODISNUD	410 117	492	0.001		CHORUSNBPb	376.367	423	0.89
		419.117	420	0.991		CHORUSNUPb	419.117	423	0.991
	NTVNUDMNFe	8.627	39	0.221		NTVNUDMNFe	8.627	39	0.221
	NTVNBDMNFe	26.467	37	0.715		NTVNBDMNFe	26.467	37	0.715
L					J	l Total:	1292.098	1373	0.941

	NNDDE7 A	Droli	mino	NY DOG		Dataset	χ^2	N_{data}	χ^2/N_{data}
		гтеш		I y Nes	<u>suits</u>	nNMCALC	4.991	14	0.357
				-		nNMCBEC	3.784	14	0.27
						nNMCCAC	10.119	23	0.44
•	Excellent agree	nNMCCALI	2.119	9	0.235				
	• •1	nNMCCLI	10.025	9	1.114				
	similar to proto	n IIts)				nNMCFEC	9.511	14	0.679
		nNMCPBC	13.251	14	0.946				
ſ				1	л –	nNMCSNC	70.293	119	0.591
	nBCDMSFED	49.685	16	3.105		nBCDMSFED	49.685	16	3.105
L						nBCDMSND	24.01	9	2.668
		nN	NPDF1	.0:(0.6)		nSLACAGD	1.366	2	0.683
						nSLACALD	2.436	3	0.812
•	Possible CC and	d NC tens	ion?			nSLACAUD	3.852	3	1.284
•	I USSIDIE CC allo					nSLACBED	5.29	3	1.763
						nSLACCAD	2.011	2	1.006
ſ		10.05	0	0.400		nSLACCD	0.573	2	0.287
	nSLACFED	19.97	8	2.496		nSLACFED	19.97	8	2.496
L	· · · · · · · · · · · · · · · · · · ·					nSLACHED	1.741	3	0.58
				(1.38)		nNMCCAD	21.064	12	1.755
						nNMCCD	56.053	26	2.156
						nNMCLID	13.622	12	1.135
						nNMCHED EMCCAD	14.537	13	1.118
ſ			-	2.200		nEMCCAD	4.212	び 10	1.404
	nFNALPBD	6.895	3	2.298			14.495	12	1.208
L					_/	nemccod remceed	10.470	21 59	0.01
				(1.66)		nEMCFED	00.479 17.044	00	0.922
	Cood avanall ak	i courred				nEMCSND	2 5 8 4	0	2.243
•	Good overall cl	II-squared				nENALCAD	2.084	- J - 2	1.216
						nFNALPRD	6 805		1.210 2.208
ſ	GHODHGNDDI		100	0.00	n L	nFNALXED	1 /183	- 1	0.371
	CHORUSNBPb	376.367	423	0.89		CHORUSNRPh	376.367	423	0.311
	CHORUSNUPb	419.117	423	0.991		CHORUSNUP	419 117	423	0.00
	NTVNIIDMNE	8 627	30	0.221		NTVNUDMNFe	8 627	39	0.221
		0.021	00	0.221		NTVNBDMNFe	26.467	37	0.715
	NTVNBDMNFe	26.467	37	0.715		Total:	1292.098	1373	0.941
L						100001	1202.000	1010	0.011

- Agreement with nNNPDF1.0
- Significant reduction in uncertainties

Comparison of 2.0 quark singlet with and without positivity (similar effect in octet distribution)

- Agreement with nNNPDF1.0
- Significant reduction in uncertainties

→ Mostly from positivity constraint!

- Agreement with nNNPDF1.0 •
- Significant reduction in uncertainties

Flavor Dependent Nuclear Effects

Flavor Dependent Nuclear Effects

Flavor Dependent Nuclear Effects

Impact of ATLAS Z production

• 14 data points from pPb $\rightarrow Z \rightarrow$ dilepton

Re-analysis of EIC Impact

• Analysis of high energy EIC pseudo-data (constructed with prelim 2.0)

• ~20% reduction in 90% CL levels for Pb ratio at low x!

Re-analysis of EIC Impact

• Analysis of high energy EIC pseudo-data (constructed with prelim 2.0)

- ~20% reduction in 90% CL levels for Pb ratio at low x!
- Can help pin down flavor separation at low *x*

Summary and Outlook

- Machine learning + Monte Carlo methods are important for robust extractions of nPDFs and their uncertainties
- Methodology improvements in nuclear PDF analysis:
 - \rightarrow Neural networks optimized with stochastic gradient descent in TensorFlow
- Highlights from first Monte Carlo nPDF fit
 - → Significant impact of A=1 boundary condition for low-A nuclei
 - → High energy EIC scenario can constrain nPDFs down to $x \sim 10^{-4}$
- Towards nNNPDF2.0

 \rightarrow Inclusion of additional observables (VB production from LHC p+Pb collisions, CC DIS) for flavor separation and uncertainty reduction

- \rightarrow New proton BC (not contaminated with heavy nuclear target data)
- \rightarrow Positivity constraints

Summary and Outlook

- Machine learning + Monte Carlo methods are important for robust extractions of nPDFs and their uncertainties
- Methodology improvements in nuclear PDF analysis:
 - \rightarrow Neural networks optimized with stochastic gradient descent in TensorFlow
- Highlights from first Monte Carlo nPDF fit
 - → Significant impact of A=1 boundary condition for low-A nuclei
 - → High energy EIC scenario can constrain nPDFs down to $x \sim 10^{-4}$
- Towards nNNPDF2.0

 \rightarrow Inclusion of additional observables (VB production from LHC p+Pb collisions, CC DIS) for flavor separation and uncertainty reduction

- \rightarrow New proton BC (not contaminated with heavy nuclear target data)
- \rightarrow Positivity constraints

THANK YOU!

BACKUP SLIDES

Non-Isoscalarity

 $\tilde{T}_{3}^{(p/A)} \equiv \frac{2Z - A}{A} T_{3}^{(p/A)} = \frac{2Z - A}{A} \left(u^{+} - d^{+} \right)^{(p/A)} (= 0 \text{ for isoscalar nuclei})$

Sum Rules

• Single fit with momentum and valence sum rules

[0.0001, 1]: 🛛 🕻	V SR_C12 =	2.9945339662073343	Momentum SR_C12 =	0.9999974805293064	V3 SR_C12 =
2.838330794514598	e-19				
[0.001, 1]:	V SR_C12 =	2.9551405609330423	Momentum $SR_C12 =$	0.9993843277929704	V3 SR_C12 =
1.856637885004808	6e-18				
[0.01, 1]:	V SR_C12 =	2.737367442451421	Momentum $SR_C12 =$	0.9868255647804303	V3 SR_C12 =
-3.03028155158343	3e-19				

• Single fit without momentum and valence sum rules

[0.0001, 1]: 🛛 🤇	V SR_C12 =	2.937137160084468	Momentum SR_C12 =	1.0160676683661045	V3 SR_C12 =
1.634969168485992e	-18				
[0.001, 1]:	V SR_C12 =	2.8889274897673056	Momentum $SR_C12 =$	1.0147116303766643	V3 SR_C12 =
5.84957487568062e-:	19				
[0.01, 1]: 9.72761683126722e-:	V SR_C12 = 19	2.6173323416484955	Momentum SR_C12 =	1.0002115750268383	V3 SR_C12 =

• Violation < 3%