Accessing Nucleon Polarizabilities with Compton Scattering

13th European Research Conference on Electromagnetic Interactions with Nucleons and Nuclei

Philippe Martel

Institute for Nuclear Physics Johannes Gutenberg University of Mainz Paphos, Cyprus - 30 October 2019

Electric polarizability α_{E1}

Electric polarizability α_{E1}

Magnetic polarizability β_{M1}

Electric polarizability α_{E1}

How could we measure this?

Magnetic polarizability $\beta_{\rm M1}$

NNNNNN

NNNNNN

 $\mathbb{A}2$

Zeroth Order - Mass and Electric Charge

$$H_{ ext{eff}}^{(0)} = rac{ec{\pi}^2}{2m} + e\phi$$
 (where $ec{\pi} = ec{
ho} - eec{
ho}$)

First Order - Anomalous Magnetic Moment

$$H_{\rm eff}^{(1)} = -\frac{e(1+\kappa)}{2m}\,\vec{\sigma}\cdot\vec{H} - \frac{e(1+2\kappa)}{8m^2}\,\vec{\sigma}\cdot\left[\vec{E}\times\vec{\pi}-\vec{\pi}\times\vec{E}\right]$$

 $\mathbb{A}2$

Zeroth Order - Mass and Electric Charge

$$H_{ ext{eff}}^{(0)} = rac{ec{\pi}^2}{2m} + e\phi$$
 (where $ec{\pi} = ec{
ho} - eec{
ho}$)

First Order - Anomalous Magnetic Moment

$$H_{\rm eff}^{(1)} = -\frac{e(1+\kappa)}{2m}\,\vec{\sigma}\cdot\vec{H} - \frac{e(1+2\kappa)}{8m^2}\,\vec{\sigma}\cdot\left[\vec{E}\times\vec{\pi}-\vec{\pi}\times\vec{E}\right]$$

Second Order - Electric and Magnetic Polarizabilities

$$\mathcal{H}_{ ext{eff}}^{(2)} = -4\pi \left[rac{1}{2} oldsymbol{lpha_{ extsf{E1}}} ec{E}^2 + rac{1}{2} oldsymbol{eta_{ extsf{M1}}} ec{H}^2
ight]$$

Third Order - Spin Polarizabilities

$$H_{\rm eff}^{(3)} = -4\pi \bigg[\frac{1}{2} \gamma_{\text{E1E1}} \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + \frac{1}{2} \gamma_{\text{M1M1}} \vec{\sigma} \cdot (\vec{H} \times \dot{\vec{H}}) - \gamma_{\text{M1E2}} E_{ij} \sigma_i H_j + \gamma_{\text{E1M2}} H_{ij} \sigma_i E_j \bigg]$$

Third Order - Spin Polarizabilities

$$H_{\rm eff}^{(3)} = -4\pi \left[\frac{1}{2} \gamma_{E1E1} \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + \frac{1}{2} \gamma_{M1M1} \vec{\sigma} \cdot (\vec{H} \times \dot{\vec{H}}) - \gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j \right]$$

Presently Known Values

$$\gamma_{0} = -\gamma_{E1E1} - \gamma_{E1M2} - \gamma_{M1E2} - \gamma_{M1E2} - \gamma_{M1M1} = (-1.0 \pm 0.08) \times 10^{-4} \text{ fm}^{4}$$

$$\gamma_{\pi} = -\gamma_{E1E1} - \gamma_{E1M2} + \gamma_{M1E2} + \gamma_{M1M1} = (8.0 \pm 1.8) \times 10^{-4} \text{ fm}^{4}$$

$$M. \text{ Camen et al. (A2), PRC 65, 032202 (2002)}$$

$\mathbb{A}2$

Third Order - Spin Polarizabilities

$$H_{\rm eff}^{(3)} = -4\pi \left[\frac{1}{2} \gamma_{\mathbf{F1}\mathbf{E1}} \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + \frac{1}{2} \gamma_{\mathbf{M1}\mathbf{M1}} \vec{\sigma} \cdot (\vec{H} \times \dot{\vec{H}}) - \gamma_{\mathbf{M1}\mathbf{E2}} E_{ij} \sigma_i H_j + \gamma_{\mathbf{E1}\mathbf{M2}} H_{ij} \sigma_i E_j \right]$$

Presently Known Values

$$\gamma_0 = -\gamma_{E1E1} - \gamma_{E1M2} - \gamma_{M1E2} - \gamma_{M1M1} = (-1.0 \pm 0.08) \times 10^{-4} \, \text{fm}^4$$

J. Ahrens *et al.* (GDH/A2), PRL 87, 022003 (2001)
 H. Dutz *et al.* (GDH), PRL 91, 192001 (2003)

 $\gamma_{\pi} = -\gamma_{E1E1} - \gamma_{E1M2} + \gamma_{M1E2} + \gamma_{M1M1} = (8.0 \pm 1.8) \times 10^{-4} \, \text{fm}^4$

M. Camen et al. (A2), PRC 65, 032202 (2002)

$$\gamma_{E1M2} = -\gamma_{E1E1} - \frac{1}{2}\gamma_0 - \frac{1}{2}\gamma_\pi \qquad \gamma_{M1E2} = -\gamma_{M1M1} - \frac{1}{2}\gamma_0 + \frac{1}{2}\gamma_\pi$$

$\mathbb{A}2$

Third Order - Spin Polarizabilities

$$H_{\rm eff}^{(3)} = -4\pi \left[\frac{1}{2} \gamma_{\mathbf{F1}\mathbf{E1}} \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + \frac{1}{2} \gamma_{\mathbf{M1}\mathbf{M1}} \vec{\sigma} \cdot (\vec{H} \times \dot{\vec{H}}) - \gamma_{\mathbf{M1}\mathbf{E2}} E_{ij} \sigma_i H_j + \gamma_{\mathbf{E1}\mathbf{M2}} H_{ij} \sigma_i E_j \right]$$

Presently Known Values

$$\gamma_0 = -\gamma_{E1E1} - \gamma_{E1M2} - \gamma_{M1E2} - \gamma_{M1M1} = (-1.0 \pm 0.08) \times 10^{-4} \, \text{fm}^4$$

 $\gamma_{\pi} = -\gamma_{E1E1} - \gamma_{E1M2} + \gamma_{M1E2} + \gamma_{M1M1} = (8.0 \pm 1.8) \times 10^{-4} \, \text{fm}^4$

J. Ahrens *et al.* (GDH/A2), PRL 87, 022003 (2001)
 H. Dutz *et al.* (GDH), PRL 91, 192001 (2003)

M. Camen et al. (A2), PRC 65, 032202 (2002)

$$\gamma_{E1M2} = -\gamma_{E1E1} - \frac{1}{2}\gamma_0 - \frac{1}{2}\gamma_\pi \qquad \gamma_{M1E2} = -\gamma_{M1M1} - \frac{1}{2}\gamma_0 + \frac{1}{2}\gamma_\pi$$

This leaves us with two unknown and two known (with error) terms.

Mainz Microtron (MAMI) e⁻ Beam

Mainz Microtron (MAMI) e⁻ Beam

Racetrack Microtron (RTM)

- Linac sends e⁻ beam into dipole
- Dipoles return the beam beam back into the linac at increasing radii
- 'Kicker' magnet ejects the beam

Mainz Microtron (MAMI) e⁻ Beam

Racetrack Microtron (RTM)

- Linac sends e⁻ beam into dipole
- Dipoles return the beam beam back into the linac at increasing radii
- 'Kicker' magnet ejects the beam

180 MeV - 1.6 GeV (15 MeV steps)

• Longitudinally polarized electrons produce circularly polarized photons (helicity transfer).

- $P_e \approx 80\%$
- Helicity flipped every second

- Longitudinally polarized electrons produce circularly polarized photons (helicity transfer).
- Diamond radiator produces linearly polarized photons (coherent Bremsstrahlung).

- Coherent edge is tunable
- Polarization plane can be flipped (usually every hour)

- Longitudinally polarized electrons produce circularly polarized photons (helicity transfer).
- Diamond radiator produces linearly polarized photons (coherent Bremsstrahlung).
- Residual electron paths bent in a spectrometer magnet.

- Longitudinally polarized electrons produce circularly polarized photons (helicity transfer).
- Diamond radiator produces linearly polarized photons (coherent Bremsstrahlung).
- Residual electron paths bent in a spectrometer magnet.
- Detector array determines the e⁻ energy, and 'tags' the photon energy by energy conservation.

Unpolarized protons

• Simple - LH2

Unpolarized protons

• Simple - LH2

Polarized protons

- Frozen Spin Target -Butanol (C₄H₉OH)
- Dynamic Nuclear Polarization (DNP)
- P_T^{max} > 90%, au > 1000 h

Unpolarized protons

• Simple - LH2

Polarized protons

- Frozen Spin Target -Butanol (C₄H₉OH)
- Dynamic Nuclear Polarization (DNP)
- $P_T^{max} > 90\%$, $\tau > 1000$ h

Low energy polarized protons

- Rejecting backgrounds
- 70 MeV detection threshold
- Limited to top right of plot

Unpolarized protons

• Simple - LH2

Polarized protons

- Frozen Spin Target -Butanol (C₄H₉OH)
- Dynamic Nuclear Polarization (DNP)
- $P_T^{max} > 90\%$, $\tau > 1000$ h

Low energy polarized protons

- Rejecting backgrounds
- 70 MeV detection threshold
- Limited to top right of plot

Unpolarized protons

• Simple - LH2

Polarized protons

- Frozen Spin Target -Butanol (C₄H₉OH)
- Dynamic Nuclear Polarization (DNP)
- $P_T^{max} > 90\%$, $\tau > 1000$ h

Low energy polarized protons

- Polarizable scintillators
- Light guide to detectors
- P_T^{max} > 50%, au > 70 h

Detectors

Crystal Ball (CB)

- 672 Nal Crystals
- 24 Particle Identification Detector (PID) Paddles
- 2 Multiwire Proportional Chambers (MWPCs)

Two Arms Photon Spectrometer (TAPS)

- $\bullet~366~BaF_2$ and 72 PbWO_4 Crystals
- 384 Veto Paddles

Σ_{2x} - Circularly polarized photons, transversely polarized protons

Σ_{2x} - Circularly polarized photons, transversely polarized protons

Fix one $(\gamma_{E1E1/M1M1})$, vary other. Band from γ_0 , γ_{π} , α_{E1} , and β_{M1} errors.

$\boldsymbol{\Sigma}_{2z}$ - Circularly polarized photons, longitudinally polarized protons

Σ_{2z} - Circularly polarized photons, longitudinally polarized protons

Fix one $(\gamma_{E1E1/M1M1})$, vary other. Band from γ_0 , γ_{π} , α_{E1} , and β_{M1} errors.

$\boldsymbol{\Sigma}_{2z}$ - Circularly polarized photons, longitudinally polarized protons

Fix one $(\gamma_{E1E1/M1M1})$, vary other. Band from γ_0 , γ_{π} , α_{E1} , and β_{M1} errors.

Fix one $(\gamma_{E1E1/M1M1})$, vary other. Band from γ_0 , γ_{π} , α_{E1} , and β_{M1} errors.

Fix one $(\gamma_{E1E1/M1M1})$, vary other. Band from γ_0 , γ_{π} , α_{E1} , and β_{M1} errors.

Fit all observables with dispersion (HDPV) or chiral perturbation (B χ PT) theories.

Already performed fits in previous paper with older Σ_3 data from LEGS.

$\boldsymbol{\Sigma}_{2z}$ - Circularly polarized photons, longitudinally polarized protons

Large systematic errors at back angles permit these B χ PT fits (model dependencies?).

Σ_{2x} - Circularly polarized photons, transversely polarized protons

Best opportunity to improve - Run again late 2020/early 2021

What about the Neutron?

The situation is even worse for the neutron (difficult with an unstable target)

- Low-energy neutron scattering
- Elastic Compton scattering from deuterium
- Quasi-free Compton scattering from deuterium
- Compton scattering from heavier nuclei

What about the Neutron?

 $\mathbb{A}2$

The situation is even worse for the neutron (difficult with an unstable target)

- Low-energy neutron scattering
- Elastic Compton scattering from deuterium
- Quasi-free Compton scattering from deuterium
- Compton scattering from heavier nuclei
- Elastic Compton scattering from ³He Shukla, Nogga, and Phillips, NPA 819, 98 (2009)

What about the Neutron?

The situation is even worse for the neutron (difficult with an unstable target)

- Low-energy neutron scattering
- Elastic Compton scattering from deuterium
- Quasi-free Compton scattering from deuterium
- Compton scattering from heavier nuclei
- Elastic Compton scattering from ³He Shukla, Nogga, and Phillips, NPA **819**, 98 (2009)

Conclusions

Regarding the proton

- Scalar polarizabilities \rightarrow See E. Mornacchi's talk next
- Spin polarizabilities have been individually extracted for the first time
- Analyses finished: one published, one submitted, one being written
- More data on tape from which Σ_3 can be extracted \rightarrow LEGS vs MAMI
- First test of an active polarized target has taken place \rightarrow Will improve the extraction (model dependence, static vs dynamic polarizabilities)
- Another run with the transverse butanol target to optimize what we have

Regarding the neutron

- Active helium target in development
- Ran with liquid ⁴He target this past summer
- Active polarized deuterated target for neutron spin polarizabilities