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Nucleon Polarizabilities
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Compton Scattering
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Compton Scattering Equations

Zeroth Order - Mass and Electric Charge

H
(0)
eff =

~π2

2m
+ eφ (where ~π = ~p − e ~A)

First Order - Anomalous Magnetic Moment

H
(1)
eff = −e(1 + κ)

2m
~σ · ~H − e(1 + 2κ)

8m2
~σ ·
[
~E × ~π − ~π × ~E

]

Second Order - Electric and Magnetic Polarizabilities

H
(2)
eff = −4π

[
1

2
αE1

~E 2 +
1

2
βM1

~H2

]
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Compton Scattering Equations

Third Order - Spin Polarizabilities

H
(3)
eff = −4π

[
1

2
γE1E1~σ · (~E × ~̇E) +

1

2
γM1M1~σ · ( ~H × ~̇H)− γM1E2EijσiHj + γE1M2HijσiEj

]

Presently Known Values

γ0 = −γE1E1 − γE1M2 − γM1E2 − γM1M1 = (−1.0± 0.08)× 10−4 fm4 J. Ahrens et al. (GDH/A2), PRL 87, 022003 (2001)

H. Dutz et al. (GDH), PRL 91, 192001 (2003)

γπ = −γE1E1 − γE1M2 + γM1E2 + γM1M1 = (8.0± 1.8)× 10−4 fm4
M. Camen et al. (A2), PRC 65, 032202 (2002)

γE1M2 = −γE1E1 −
1

2
γ0 −

1

2
γπ γM1E2 = −γM1M1 −

1

2
γ0 +

1

2
γπ

This leaves us with two unknown and two known (with error) terms.
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Mainz Microtron (MAMI) e− Beam
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• Linac sends e− beam into dipole

• Dipoles return the beam beam back

into the linac at increasing radii

• ‘Kicker’ magnet ejects the beam

180 MeV − 1.6 GeV (15 MeV steps)
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Polarized Photon Beam

A high energy electron can produce Bremsstrahlung

(‘braking radiation’) photons when slowed down by a

material.

• Longitudinally polarized electrons produce

circularly polarized photons (helicity transfer).

• Diamond radiator produces linearly polarized

photons (coherent Bremsstrahlung).

• Residual electron paths bent in a spectrometer

magnet.

• Detector array determines the e− energy, and

‘tags’ the photon energy by energy conservation.
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• Coherent edge is tunable

• Polarization plane can be flipped

(usually every hour)
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Targets

Unpolarized protons

• Simple - LH2

Polarized protons

• Frozen Spin Target -

Butanol (C4H9OH)

• Dynamic Nuclear

Polarization (DNP)

• Pmax
T > 90%, τ > 1000 h

Low energy polarized protons

• Rejecting backgrounds

• 70 MeV detection threshold

• Limited to top right of plot
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Mainz Active Polarized Proton Target M. Biroth

1. Introduction

At the MAMI electron accelerator in Mainz, Germany, the A2 Collaboration investigates the
spin-polarizabilities of the proton by scattering experiments with spin-polarized energy-tagged
photons. Due to the excellent temperature stability of the Mainz Frozen Spin Target a large de-
gree of proton polarization with high relaxation times can be achieved.

At the core of the frozen spin target for the Crystal Ball detector at MAMI is a roughly 2 m
long, horizontal 3He/4He dilution refrigerator that was built in cooperation with the Joint Institute
for Nuclear Research (JINR) Dubna. The cryostat has a separator working at 3 K and an evaporator
working at 1.2 K in the pre-cooling stages. At the target position the cryostat provides a very low
operation temperature of 25 mK.

The forming of highly polarized target nuclei is a two step process: in the initial step a high de-
gree of nucleon polarization is achieved through a microwave pumping process, known as Dynamic
Nucleon Polarization (DNP). This requires placing the target material in a highly uniform magnetic
field of typically 2.5 Tesla and passing microwave radiation at a frequency near 70 GHz through it.
The use of the microwaves leads to a moderate increase of the base temperature of the cryostat
from 0.02 K to around 0.2 K. In a second step, the microwaves are switched off. Consequently,
the temperature of the target material drops and the relaxation time of the nucleons increases to
somewhere in the order of several thousand hours, although the field is reduced to a holding field
of only 0.68 T for the longitudinal polarization and 0.5 T for the transverse polarization. Then a
measurement period of up to approximately one week in the frozen spin mode is possible.

The dynamically polarized, frozen spin target at MAMI was constructed for use inside the
Crystal Ball detector with beams of tagged photons. When being polarized the cryostat is moved
outside of the Crystal Ball. Thin superconducting holding coils were installed on the thermal radia-
tion protection shields of the refrigerator to maintain the target polarization during the experiments.
Details of the frozen spin target at MAMI can be found, e.g. in Ref. [1].

T = 4 K T = 25 mK

Outer Vacuum Seal Inner Vacuum Seal

Light Guide Tube, Vacuum Inside

3He-4He-Mixture

Target Head
SiPM Detector Board

Cryostat

Figure 1: Schematics of the active polarized proton target. The target is immersed in a liquid 3He/4He
mixture with a temperature of T ∼ 25 mK at the target head. This design includes wavelength-shifting
material to transport light from the scintillators in the target head to the glass tube which is read out at the
warm side by SiPMs.

An active polarized proton target is being developed to identify the reactions below the pion
threshold by detecting recoil protons inside the Mainz-Dubna dilution cryostat [2]. Polarizable
plastic scintillator disks are stacked in a target head made of wavelength-shifting material or

2
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of only 0.68 T for the longitudinal polarization and 0.5 T for the transverse polarization. Then a
measurement period of up to approximately one week in the frozen spin mode is possible.

The dynamically polarized, frozen spin target at MAMI was constructed for use inside the
Crystal Ball detector with beams of tagged photons. When being polarized the cryostat is moved
outside of the Crystal Ball. Thin superconducting holding coils were installed on the thermal radia-
tion protection shields of the refrigerator to maintain the target polarization during the experiments.
Details of the frozen spin target at MAMI can be found, e.g. in Ref. [1].
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Figure 1: Schematics of the active polarized proton target. The target is immersed in a liquid 3He/4He
mixture with a temperature of T ∼ 25 mK at the target head. This design includes wavelength-shifting
material to transport light from the scintillators in the target head to the glass tube which is read out at the
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An active polarized proton target is being developed to identify the reactions below the pion
threshold by detecting recoil protons inside the Mainz-Dubna dilution cryostat [2]. Polarizable
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Target

TAPS

BaF2

PbWO4

Crystal Ball (CB)

• 672 NaI Crystals

• 24 Particle Identification Detector

(PID) Paddles

• 2 Multiwire Proportional Chambers

(MWPCs)

Two Arms Photon Spectrometer (TAPS)

• 366 BaF2 and 72 PbWO4 Crystals

• 384 Veto Paddles
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Σ2x - Circularly polarized photons, transversely polarized protons

Σ2x =
NR

+x − NL
+x

NR
+x + NL

+x

PM et al. (A2)

PRL 114, 112501 (2015)
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Σ2z - Circularly polarized photons, longitudinally polarized protons

Σ2z =
NR

+z − NL
+z

NR
+z + NL

+z

D. Paudyal et al. (A2)

arXiv:1909.02032 (2019)

Fix one (γE1E1/M1M1), vary other. Band from γ0, γπ, αE1, and βM1 errors.
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Σ3 - Linearly polarized photons, unpolarized protons

Σ3 =
N‖ − N⊥

N‖ + N⊥

C. Collicott et al. (A2)

Draft in progress (2019)
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Fit all observables with dispersion (HDPV) or chiral perturbation (BχPT) theories.
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Already performed fits in previous paper with older Σ3 data from LEGS.
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Large systematic errors at back angles permit these BχPT fits (model dependencies?).
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Σ2x - Circularly polarized photons, transversely polarized protons

Σ2x =
NR

+x − NL
+x

NR
+x + NL

+x

C. Collicott et al. (A2)

Draft in progress (2019)
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Best opportunity to improve - Run again late 2020/early 2021
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What about the Neutron?

The situation is even worse for the neutron (difficult with an unstable target)

• Low-energy neutron scattering

• Elastic Compton scattering from deuterium

• Quasi-free Compton scattering from deuterium

• Compton scattering from heavier nuclei

• Elastic Compton scattering from 3He - Shukla, Nogga, and Phillips, NPA 819, 98 (2009)
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Conclusions

Regarding the proton

• Scalar polarizabilities → See E. Mornacchi’s talk next

• Spin polarizabilities have been individually extracted for the first time

• Analyses finished: one published, one submitted, one being written

• More data on tape from which Σ3 can be extracted → LEGS vs MAMI

• First test of an active polarized target has taken place → Will improve the extraction

(model dependence, static vs dynamic polarizabilities)

• Another run with the transverse butanol target to optimize what we have

Regarding the neutron

• Active helium target in development

• Ran with liquid 4He target this past summer

• Active polarized deuterated target for neutron spin polarizabilities
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