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Outline
� Light ions at an electron-ion collider
� Nucleon structure

I polarized deuteron spectator tagging
� Nucleon-nucleon interaction, coherence
� Imaging of light nuclei
� Experimental apparatus
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Why focus on light ions at an EIC?
� Measurements with light ions address essential parts of the EICphysics program

I neutron structure
I nucleon interactions
I coherent phenomena

� Light ions have unique features
I polarized beams
I breakup measurements & tagging
I first principle theoretical calculations of initial state

� Intersection of two communities
I high-energy scattering
I low-energy nuclear structure

Use of light ions for high-energy scattering and QCD studies remainsrelatively unexplored
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EIC design characteristics (for light ions)
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� High luminosity enables probing/measuring
I exceptional configurations in target
I multi-variable final states
I polarization observables

� Polarized light ions
I 3He, other @ eRHIC
I d, 3He, other @ JLEIC(figure 8)
I spin structure, polarizedEMC, tensor pol, ...

� Forward detection of target beamremnants
I diffractive and exclusive processes
I coherent nuclear scattering
I nuclear breakup and tagging
I forward detectors integrated indesigns
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Light ions at EIC: physics objectives
� Neutron structure

I flavor decomposition of quark PDFs/GPDs/TMDs
I flavor structure of the nucleon sea
I singlet vs non-singlet QCD evolution, leading/higher-twisteffects

� Nucleon interactions in QCD
I medium modification of quark/gluon structure
I QCD origin of short-range nuclear force
I nuclear gluons
I coherence and saturation

� Imaging nuclear bound states
I imaging of quark-gluon degrees of freedom in nucleithrough GPDs
I clustering in nuclei

Need to control nuclear configurations that play a role inthese processes
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Theory: high-energy scattering with nuclei
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� Interplay of two scales: high-energy scattering andlow-energy nuclear structure. Virtual photon probesnucleus at fixed lightcone time x+ = x0 + x3

� Scales can be separated using methods of light-frontquantization and QCD factorization
� Tools for high-energy scattering known from ep

� Nuclear input: light-front momentum densities, spectralfunctions, overlaps with specific final states inbreakup/tagging reactions
I framework known for deuteron, can be extended to 3He
I still low-energy nuclear physics, just formulateddifferently
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Theory: nuclear structure calculations
� First principle NR calculations available for light ions
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� Controlled expansion andhierarchy using χEFT for two-and three- body forces
� Variety of methods: finite-basis,no-core SM, GFMC, lattice EFT
� Fadeev methods for 3Hereactions

These tools need to be extended for applications in high-energy scattering
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Neutron structure measurements
Needed for flavor separation, singlet vs non-singlet evolution etc.

� EIC will measure inclusive DIS on light nuclei [d ,3He, 3H(?)]
I Simple, no FSI effects
I Compare n from 3He ↔ p from 3H
I Comparison n from 3He, d

� Uncertainties limited by nuclear structure effects(binding, Fermi motion, non-nucleonic dof)
� 3He is in particular affected because of intrinsic ∆s
If we want to aim for precision, use tools that avoid these complications
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Neutron structure with tagging
� Proton tagging offers a way of controlling the nuclear configuration
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t = ( − ) 2

pn

� Advantages for the deuteron
I active nucleon identified
I recoil momentum selects nuclear configuration(medium modifications)
I limited possibilities for nuclear FSI, calculable

� 3He [A− 1 tagging] → Talk R. Milner
� Suited for colliders: no target material (pp → 0), forward detection,polarization.fixed target CLAS BONuS limited to recoil momenta ∼ 70 MeV
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Pole extrapolation for on-shell nucleon structure
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� Allows to extract free neutron structure
I Recoil momentum pR controls off-shellness ofneutron t ′ ≡ t −m2

N
I Free neutron at pole t −m2

N → 0: “on-shellextrapolation”
I Small deuteron binding energy results in smallextrapolation length
I Eliminates nuclear binding and FSI effects

[Sargsian,Strikman PLB '05]

� D-wave suppressed at on-shell point → neutron ∼ 100% polarized
� Precise measurements of neutron (spin) structure at an EIC
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Theoretical Formalism
� General expression of SIDIS for a polarized spin 1 target

I Tagged spectator DIS is SIDIS in the target fragmentation region
~e + ~T → e ′ + X + h

� Dynamical model to express structure functions of the reaction
I First step: impulse approximation (IA) model
I Results for longitudinal spin asymmetries
I FSI corrections (unpolarized Strikman, Weiss PRC '18)

� Light-front structure of the deuteron
I Natural for high-energy reactions as off-shellness of nucleons in LFquantization remains finite
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Polarized spin 1 particle
� Spin state described by a 3*3 density matrix in a basis of spin 1 statespolarized along the collinear virtual photon-target axis

W µν
D = Tr [ρλλ′W µν (λ′λ)]

� Characterized by 3 vector and 5 tensor parameters
Sµ = 〈Ŵ µ〉 , T µν = 1
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� Can be formulated in covariant manner → ρµν = ∑λλ′ ε∗µ(λ′)εν (λ)ρλλ′
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Spin 1 SIDIS: General structure of cross section
� To obtain structure functions, enumerate all possible tensor structuresthat obey hermiticity and transversality condition (qW = Wq = 0)
� Cross section has 41 structure functions,

dσ
dxdQ2dφl ′

= y2α2
Q4(1− ε) (FU + FS + FT ) dΓPh

,

I U + S part identical to spin 1/2 case [Bacchetta et al. JHEP ('07)]
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Tagged DIS with deuteron: model for the IA
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� Hadronic tensor can be written as a product ofnucleon hadronic tensor with deuteronlight-front densities
W µν

D (λ′, λ) = 4(2π)3 αR
2− αR

∑
i=U,z ,x ,y

W µν
N,iρ

i
D (λ′, λ) ,

All SF can be written as
F k
ij = {kin. factors} × {F1,2(x̃ ,Q2)or g1,2(x̃ ,Q2)} × {bilinear formsin deuteron radial wave function f0(k) [S-wave], f2(k) [D-wave]}

� In the IA the following structure functions are zero → sensitive to FSI
I beam spin asymmetry [F sinφh

LU ]
I target vector polarized single-spin asymmetry [8 SFs]
I target tensor polarized double-spin asymmetry [7 SFs]
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Deuteron light-front wave function
n

p
= 1J

S + D-wave

� Up to momenta of a few 100 MeV dominated by NNcomponent
� Can be evaluated in LFQM [Coester,Keister,Polyzou et al.]or covariant Feynman diagrammatic way

[Frankfurt,Sargsian,Strikman]
� One obtains a Schrödinger (non-rel) like eq. for the wave functioncomponents, rotational invariance recovered
� Light-front WF obeys baryon and momentum sum rule

ΨD
λ (k f , λ1, λ2) = √Ekf

∑
λ′
1
λ′
2

D
1

2

λ1λ′1
[Rfc (kµ1f /mN )]D 1

2

λ2λ′2
[Rfc (kµ2f /mN )]ΦD

λ (k f , λ′1, λ′2)
� Differences with non-rel wave function:

I appearance of the Melosh rotations to account for light-front quantizednucleon states
I k f is the relative 3-momentum of the nucleons in the light-front boostedrest frame of the free 2-nucleon state (so not a “true” kinematicalvariable)
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Tagging: unpolarized neutron structure
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αR = 2p+
R /p

+
D

� F2n extracted withpercent-level accuracy at
x < 0.1

� Uncertainty mainlysystematic due to intrinsicmomentum spread in beam(JLab LDRD project: detailedestimates)
� In combination with protondata non-singlet F2p − F2n ,sea quark flavor asymmetry

d̄ − ū

Wim Cosyn (FIU) EINN19 Oct 29, 2019 16 / 30



Polarized structure function: longitudinal asymmetry
� On-shell extrapolation of double spin asymmetry

d1/2− λ+λ

e d

=e
+
−1, 0=

I Nominator
dσ|| ≡ 1
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2
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I Asymmetries: tensor polarization enters in 2-state one
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� Impulse approximation yields in the Bjorken limit [αp = 2p+
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]
A||,i ≈ D i (αp, |ppT |)A||n = D i (αp, |ppT |) D||g1n(x̃ ,Q2)

2(1 + εRn)F1n(x̃ ,Q2)
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Nuclear structure factors D 2, D 3
� D 2 has physical interpretation as ratio of nucleon helicity density tounpolarized density in a deuteron with polarization +1.
� D 3 has no such interpretation.
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� Bounds: −1 ≤ D 2 ≤ 1

� Due to lack of OAM D 2 ≡ 1 for pT = 0

� Clear contribution from D-wave at finiterecoil momenta
� D 3 violates bounds due to lack of tensorpol. contribution
� D 3 6= 0 for pT = 0

� D 2 closer to unity at small recoilmomenta
� 2-state asymmetry is also easierexperimentally!!
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Tagging: simulations of A||

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0  0.02  0.04  0.06

S
p

in
  

as
y

m
m

et
ry

 
 A

||

MN
2
 − t  from recoil momentum  [GeV

2
]

Longitudinal spin asymmetry in conditional DIS e + D → e’ + p + X

x = 0.04 - 0.06,  αR = 0.98 - 1.02

MEIC simulation

CM energy seN = 1000 GeV
2

Int. luminosity 2 × 10
7
 nb

-1Kinem. limit

Free neutron

Q
2
 = 13-20 GeV

2

20-30 GeV
2

30-40 GeV
2

JLab LDRD arXiv:1407.3236, arXiv:1409.5768
https://www.jlab.org/theory/tag/

� D-wave suppr. at on-shell point
→ neutron ∼ 100% polarized

� Systematic uncertainties cancelin ratio (momentum smearing,resolution effects)
� Statistics requirements

I Physical asymmetries ∼ 0.05− 0.1
I Effective polarization PePD ∼ 0.5
I Luminosity required ∼ 10

34cm−2s−1

Wim Cosyn (FIU) EINN19 Oct 29, 2019 19 / 30



Tagging: simulations of A||
On-shell extrapolation of double spin asymm. A|| = D g1n

F1n
+ · · ·
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� As depolarization factor
D = y (2−y )

2−2y+y2
and

y ≈ Q2

xseN
, wide range of

seN required!
� Precise measurement of neutron spin structure

I separate leading- /higher-twist
I non-singlet/singlet QCD evolution
I pdf flavor separation ∆u,∆d . ∆G through singlet evolution
I non-singlet g1p − g1n and Bjorken sum rule
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Final-state interactions in tagging
e’

p

e

p

fast

slow

q

Strikman, Weiss, PRC7 035209 ('18)

� Issue in tagging: DIS products caninteract with spectator → rescattering,absorption
� Dominant contribution at intermediate

x ∼ 0.1− 0.5 from "slow" hadrons thathadronize inside nucleus
� Measure fracture functions with EIC
� Features of the FSI of slow hadrons withspectator nucleon are similar to what isseen in quasi-elastic deuteron breakup.
� FSI vanish at the pole → poleextrapolation still feasible
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Nucleon interactions
How do nucleon interactions emerge from QCD?

� Short-range structure of nuclei, NN force at very short distances
I Quasi-elastic d breakup
I Short-range correlation studies: (multi-)nucleon knockout w high (>kF )initial momenta, 3N correlations?
I Gluonic content

γ + D → J/ψ + p + n (at high pT ) Miller,Sievert,Venugopalan, PRC93 ('16)(in)coherent J/ψ production Mäntysaari, Schenke, 1910.03297

� Medium modification of nucleon properties embedded in nucleus:EMC effect, other quantities
� Non-nucleonic dof in nuclei: ∆ tagging in deuteron
JLab12 will measure some of these processes, but open questions willremain that can be addressed at EIC
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Tagging: EMC effect

average-size small-size

e

e'

D
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e

Final−state interactions

D N

X

� Medium modification of nucleonstructure embedded in nucleus(EMC effect)
I dynamical origin?
I caused by which momenta/distances innuclear WF
I spin-isospin dependence?

� tagged EMC effect
I recoil momentum as extra handle onmedium modification (off-shellness,size of nuclear configuration) awayfrom the on-shell pole
I EIC: Q2 evolution, gluons, spindependence!

� Interplay with final-stateinteractions!
I use x̃ = 0.2 to constrain FSI
I constrain medium modification athigher x̃
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Nuclear interactions: Coherence
� interaction of high-energy probe with coherentquark-gluon fields

� Shadowing is manifestation of coherence
I Diffractive DIS at x � 0.1: 10-15% of events at HERA
I Interference between diffractive amplitudes
→ reduction of cross section, leading twist

I Extensively studied in heavy nuclei
I Is especially clean in the deuteron, effects can be calculated
I Dynamics of shadowing can be explored in tagging: single and double
I Tagging also results in FSI between the slow n and p

[Guzey,Strikman,Weiss; in preparation]
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Nuclear imaging
Images of nuclei in terms of quark and gluon dof

� Deeply virtual Compton scattering, mesonproduction → GPDs
I coherent: transverse imaging of nuclei
I incoherent: medium modification of transversenucleon densities

� Tagged DVCS/DVMP provides additionalcontrol over initial configuration
� Transverse gluon structure with exclusivecoherent J/ψ production
� Polarization: 2D [spin 1], 3He [1/2], 4He [0]
� Clustering & spin-orbit phenomena in nuclearstructure of light nuclei
� Other resolved final states: SIDIS etc.
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Nuclear imaging: deuteron tensor polarization
� Tensor polarization in D probes nuclear effects

� Little explored in high-energy scattering
� Inclusive b1 result from HERMES: no conventional nuclear calculationreproduces data
� Unique features: eg access gluon transversity → talk Shanahan
� Tagged cross section yields 23 additional structure functions withspecific azimuthal dependences [Cosyn,Sargsian,Weiss, in prep.]
� T -odd SF [DSA] are zero in impulse approximation → sensitive to FSI
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EIC: forward detection system

[not to scale]
� Large acceptance forward detector [concept: P. Nadel-Turonski, Ch. Hyde et al.]

I beams collide at small crossing angle 25-50 mrad
I forward p/n/ions travel through ion beam quadrupole magnets
I dispersion generated by dipole magnets
I detector systems:tracking in dipole magnetsRoman pots for charged (p,ions) forward particleszero-degree calorimeters (ZDCs) for neutrals (neutron, photon)

� Major optimization and integration challenge
I Forward particles with range of rigidities (momentum/charge), different from beam
I Range in ion beam energy
I Geometry of magnets and infrastructure
I More complex than forward detectors at HE colliders [HERA, RHIC, LHC]
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EIC: forward detection system

JLEIC IR design: V. Morozov et al 2019,
eRHIC IR design, Ch. Montag et al 2019

� IR designs
I JLEIC and eRHIC designsimilar
I Differences: crossing angle50 [JLEIC] - 25 mrad [eRHIC];JLEIC secondary focus at RPlocation

� Forward acceptance andresulotion
I software framework developed
I simulations on-going

� Momentum spread in ion beam
I transverse momentum spread
∼ few 10 MeV

I smearing effect:
pT [vertex] 6= pT [measured],systematic uncertainty
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Conclusions
� Light ions address important parts of the EIC physics program
� Tagging and nuclear breakup measurements overcome limitations dueto nuclear uncertainties in inclusive DIS → precision machine

� Unique observables with polarized deuteron: free neutron spinstructure, tensor polarization
� Extraction of nucleon spin structure in a wide kinematic range
� Lots of extensions to be explored!
� EIC forward detection design ongoing
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Upcoming meetings 2020
� Exploring QCD with light nuclei at EICJan 22-24, CFNS Stony Brook

https://indico.bnl.gov/event/6799/

� Tomography of light nuclei at an EICJune 15-19, ECT* [Trento]
� Exploring QCD with Tagged ProcessesSep 14 - Oct 23 [6 week program], Institut Pascal [Saclay, Paris]

https://www.universite-paris-saclay.fr/fr/exploring-qcd-with-tagged-processes
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