Nucleon structure

Barbara Badelek University of Warsaw

Workshop on Frontiers and Careers in Photonuclear Physics

Paphos, 27-28 October 2019

B. Badelek (Warsaw)

Nucleon structure

Frontiers..., 2019 1 / 82

∃ ► < ∃ ►</p>

Basics

B. Badelek (Warsaw)

Nucleon structure

Frontiers..., 2019 2 / 82

æ

< □ > < □ > < □ > < □ > < □ >

Probing the structure of the proton

- At very low electron energies $\lambda \gg r_p$: the scattering is equivalent to that from a "point-like" spin-less object
- At low electron energies $\lambda \sim r_p$: the scattering is equivalent to that from a extended charged object
- At high electron energies $\lambda < r_p$: the wavelength is sufficiently short to resolve sub-structure. Scattering from constituent quarks
- At very high electron energies $\lambda \ll r_p$: the proton appears to be a sea of quarks and gluons.

From: M.A. Thomson, Michaelmas Term 2011

A great example: studies of matter via its constituents

From Democritus to the present view of proton structure in terms of partons

E. Rutherford, 1910-1911

SLAC-MIT, PRL 23 (1969) 935

CERNCourier May 2019

3 > 4 3

B. E	Bade	lek i	(Warsaw)	
			· ·· · · /	

Nucleon structure

Frontiers..., 2019 4 / 82

Nucleon (spin) structure in DIS: $\vec{\mu} + \vec{N} \rightarrow \mu' + X$

•
$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\mathrm{d}E'} = \frac{\alpha^2}{2Mq^4} \frac{E'}{E} L_{\mu\nu} W^{\mu\nu}$$

- Symmetric part of $W^{\mu\nu}$ unpolarised DIS, antisymmetric polarised DIS
- Nominally $F_{1,2}, q(x,Q^2) \longrightarrow g_{1,2}, \Delta q(x,Q^2)$ where $q = q^+ + q^-, \Delta q = q^+ - q^-$, but...
- ...anomalous gluon contribution to $g_1(x,Q^2)$
- $...g_2(x,Q^2)$ has no interpretation in terms of partons.

...and of the γ^* -N asymmetry (e.g. for γ^* -p):

Definitions of DIS variables...

 $\begin{array}{ll} Q^2 = -q^2 & \gamma^* \text{ virtuality} \\ x = Q^2/(2Pq) & \text{Bjorken variable} \\ y = Pq/(Pk) & \text{relative } \gamma^* \text{ energy} \\ W = P+q & \gamma^*\text{-N cms energy} \end{array}$

Frontiers..., 2019 5 / 82

From elastic to (deep) inelastic electron - nucleon scattering

Radial, broken lines: x = const.Parallel, continuous lines: W = const.

Low x – large parton (gluon) densities. Low Q^2 – nonperturbative effects.

< ロト < 同ト < ヨト < ヨト

DIS = Deep Inelastic Scattering (large Q^2, ν) e + p \rightarrow e' + X

Frontiers..., 2019 6 / 82

Machines: past, presence and future

EIC medium energy $\sqrt{s} \simeq 20 - 100~{ m GeV}$	V LHeC FCC-ep	VHEeP
high luminosity $10^{34}~{ m cm}^{-2}{ m s}^{-1}$	high energy $\sqrt{s}\simeq 1$ -	-5 TeV very high energy, $\sqrt{s} \sim 9 \text{ TeV}$
wide range of nuclei from deuteron to heaviest(uranium/lead)	high luminosity $ m ~10^{34}~cm^{-2}$	$_{\rm s}^{2}$ low luminosity, 10–100 pb ⁻¹
polarization of electron and nucleon beams	electron ion scattering on lead	electron-proton scattering
A.M. Cooper-Sarkar, Poetic7,2016;	A. Stasto, Poetic7,2016; http://cerncour	rier.com/cws/article/cern/57304≣ ト ≣ ∽९९०
B. Badelek (Warsaw)	Nucleon structure	Frontiers, 2019 7 / 82

"New **directions** in science are **launched** by **new tools** much more often than by new concepts."

Freeman Dyson

(Theorist, mathematician; IAS, Princeton)

Electron Ion Collider, EIC

B. Badelek (Warsaw)

Nucleon structure

Frontiers.... 2019 8 / 82

EIC at BNL or JLab

BNL (eRHIC)

Add energy recovery LINAC (inside RHIC tunnel)

JLab (MEIC)

B. Badelek (Warsaw)

FFAG Recirculating Electron Rings

1.3-6.6 GeV (

Nucleon structure

ERL Cryomo

Polarized

100 meters

Energy Recovery Linac 1.32 GeV

EIC: main features

- Highly polarised (\sim 70%) e, N beams (COMPASS: $P_{\mu} \sim$ 80%, $P_{p} \sim$ 90%)
- ions from deuteron to uranium (lead ?)
- variable \sqrt{s} from \sim 20 GeV to \sim 150 GeV
- high luminosity: $\sim 10^{33-34}$ cm⁻² s⁻¹ (cooling of hadronic beam !)
- more than one interaction region
- Iimits of current technology \R & D!
- staged realisation.

A dedicated EIC detector

- Acceptance -5 < η < 5 (large, comparable to CMS forward)
- PID: π , K, p, leptons
- Low material density (minimal multiple scattering and bremsstrahlung)
- Hadron beams: proton to lead

Frontiers..., 2019 12 / 82

From "White paper", arXiv:1212.1701

イロト イポト イヨト イヨト

New domain for ep colliders

B. Badelek (Warsaw)

Frontiers..., 2019 13 / 82

Basics of QCD

\implies Parton Distribution Functions (PDFs)

B. Badelek (Warsaw)

Nucleon structure

Frontiers..., 2019 14 / 82

э

イロト イポト イヨト イヨト

R. P. Feynman, Proceedings of the 3rd Topical Conference on High Energy Collision of Hadrons, Stony Brook, N. Y. (1969), Gordon & Breach, pp 237-249, ISBN 978-0-677-13950-0 Phys. Rev. Lett. 23, 1415 – Published 15 December 1969

Strong vs electomagnetic interactions in DIS

Quark-Parton Model (QPM) becomes complicated...

From M.A. Thomson, Michaelmas Term 2011

QCD interactions induce a well known Q² dependence

DGLAP evolution equations

factorization: $\frac{\mathrm{d}\sigma}{\mathrm{d}x\,\mathrm{d}Q^2} = \sum_{q} q(x,Q^2) \otimes \frac{\mathrm{d}\hat{\sigma}_q}{\mathrm{d}Q^2}$ universality: same $q(x,Q^2)$ measured in DIS can be used in other processes

M. Anselmino, Bad Honnef 2017

Here proton is 1-D

B. Badelek (Warsaw)

Nucleon structure

Frontiers..., 2019 18 / 82

э

イロト イポト イヨト イヨト

Partonic structure of the nucleon; distribution functions

Three twist-two quark distributions in QCD (momentum, helicity & transversity) after integrating over the quark intrinsic k_t

Quark momentum DF; well known (unpolarised DIS $\rightarrow \mathbf{F_{1,2}}(\mathbf{x}, \mathbf{Q}^2)$).

Difference in DF of quarks with spin parallel or antiparallel to the nucleon's spin in a longitudinaly polarised nucleon; less well known (polarised DIS $\rightarrow g_1(x, Q^2)$).

Difference in DF of quarks with spin parallel or antiparallel to the nucleon's spin in a transversely polarised nucleon; poorly known (polarised DIS $\rightarrow h_1(x, Q^2)$).

イロト イポト イヨト イヨト

Nonrelativistically: $\Delta_T q(x, Q^2) \equiv \Delta q(x, Q^2)$. OBS.! $\Delta_T q(x, Q^2)$ are C-odd and chiral-odd

Processes available for parton (helicity) distributions

STAR@RHIC PHENIX@RHIC

A I > A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Drell-Yan process, complementary to SIDIS

B. Badelek (Warsaw)

Nucleon structure

(HERMES@HERA)

COMPASS@CERN

JLab

▲ Ξ ▶ ▲ Ξ ▶ Ξ ♡ Q ○
 Frontiers..., 2019 21 / 82

Parton distributions for the proton (universal!)

...from the measurements of $d^2\sigma/dxdQ^2$ in inclusive ep scattering

B. Badelek (Warsaw)

Nucleon structure

Scaling violation

Bjorken scaling:

 $Q^2 \rightarrow \infty, \nu \rightarrow \infty$ observables depend on dimensionless, finite $x = Q^2/(2M\nu)$

From Particle Data Tables, 2012

QCD can predict the Q^2 dependence of $F_2(x, Q^2)$

B. Badelek (Warsaw)

Frontiers..., 2019 23 / 82

Scaling violation,...cont'd

B. Badelek (Warsaw)

Nucleon structure

Frontiers..., 2019 24 / 82

mid-rapidity RHIC data, unpolarised cross sections (arXiv:1409.1907 [hep-ex], Phys. Rev. D91 (2015) 3, 032001)

large P_T single pion production $p p \rightarrow \pi X$

good agreement between RHIC data and collinear pQCD calculations, same for jet production at LHC

M. Anselmino, DIS2019

) 2 (

PDF information from p+p collisions

Let there be light: the photon PDF

The proton contains not only quark and gluons as constituents: also photons!

Fine photon PDF can be evaluated from deep-inelastic structure functions F2 and FL

LuxQED: Manohar et al 16,17

29/82

Required for consistent implementation of electroweak corrections at the LHC

Neutrino telescopes

Ultra-high energy (UHE) neutrinos: novel window to the extreme Universe!

Neutrino telescopes as QCD microscopes

Ultra-high energy (cosmic) neutrino - nucleus scattering: unique probe of small-x PDFs and QCD

Towards including spin:

experimenting with polarised beams/targets

B. Badelek (Warsaw)

Nucleon structure

Frontiers..., 2019 32 / 82

モトィモト

In lepton-nucleon (i.e. fixed-target) spin experiments...

- ...needed are polarised targets and beams (i.e. nucleons with aligned spins)
- of large density of those spins (dense beams and large targets)
- measurements are differential to minimise systematic errors

$$\frac{N^{\leftrightarrows} - N^{\rightleftharpoons}}{N^{\leftrightarrows} + N^{\Leftarrow}}$$

(upper arrow denotes lepton spin, lower one - spin of the target proton):

Example of a two-cell COMPASS target:

Helicities in the $\vec{p}\vec{p}$ collider

STAR sees 4 helicity configurations STAR runs 4 parallel measurements

RHIC measured polarization Run 9 @ 2x250 GeV Pol yellow 0.40 Pol blue 0.38 syst. pol (blue+yellow)=9.2%

B. Badelek (Warsaw)

Nucleon structure

Frontiers..., 2019 34 / 82

Longitudinal asymmetries in the $\vec{p}\vec{p}$ collider

Nı te Longitudinal spin asymmetries for Ws

STAR has measured 4 independent yields for the physics process selected 3 asymmetries are independent (6 were investigated)

yields integrated over |eta|<1

	Leading physics asymmetry	cross section dependence	raw asymmetry
	A_L (blue)	$(\sigma_{++} + \sigma_{+-} - \sigma_{} - \sigma_{-+})/sum4$	$A_L P_1$
	A_L (yellow)	$(\sigma_{++} + \sigma_{-+} - \sigma_{} - \sigma_{+-})/sum4$	$A_L P_2$
	AL (average)	$(\sigma_{++} - \sigma_{}) / sum4$	$A_L rac{P_1 + P_2}{2}$
	ALL	$(\sigma_{++} + \sigma_{} - \sigma_{-+} - \sigma_{+-}) / sum4$	$A_{LL}P_1P_2$
ull st	$A_L(P_1-P_2)$	$(\sigma_{+-} - \sigma_{-+}) / (\sigma_{-+} + \sigma_{+-})$	$rac{A_L(P_1-P_2)}{1-A_{LL}P_1P_2}$
	$A_L^* \simeq A_L$	$(\sigma_{++} - \sigma_{}) / (\sigma_{++} + \sigma_{})$	$\frac{A_L(P_1 + P_2)}{1 + A_{LL}P_1P_2}$

where $sum4 = \sigma_{++} + \sigma_{+-} + \sigma_{-+} + \sigma_{--}$

Method of extraction of g_1 in a $\vec{\mu}\vec{N}$ fixed-target experiment

• Inclusive asymmetry, $A_{meas}(x, Q^2)$; γ^* -N asymmetry, $A_1(x, Q^2)$; $g_1(x, Q^2)$:

$$A_{meas} = \frac{1}{fP_TP_B} \left(\frac{N^{\leftrightarrows} - N^{\rightleftharpoons}}{N^{\leftrightarrows} + N^{\rightleftharpoons}} \right) \approx DA_1 = D \; \frac{g_1(x, Q^2)}{F_1(x, Q^2)} \stackrel{\text{LO}}{=} \; D \; \frac{\sum_q e_q^2 \Delta q(x, Q^2)}{\sum_q e_q^2 q(x, Q^2)}$$

f, D: dilution and depolarisation factors; P_T, P_B : target and beam polarisations; $N^{\pm,\pm}$: number of $\vec{\mu}$ interactions in each target cell: (upstream, downstream) or (outer, central)

• Then $g_1(x, Q^2)$:

$$g_1(x,Q^2) = A_1(x,Q^2) \cdot F_1(x,Q^2) = A_1(x,Q^2) \cdot \frac{F_2(x,Q^2)}{2x(1+R(x,Q^2))}$$

For the deuteron target:

(per nucleon)
$$g_1^d = g_1^N (1 - \frac{3}{2}\omega_D) = \frac{g_1^p + g_1^n}{2} (1 - \frac{3}{2}\omega_D); \quad \omega_D = 0.05 \pm 0.01$$

Method of extraction of g_1 in a $\vec{\mu}\vec{N}$ fixed-target experiment,... cont'd

• At LO, semi–inclusive (SIDIS) asymmetry, A_1^h :

$$\mathbf{A}_{1}^{h}(x,z,Q^{2}) \approx \frac{\displaystyle \sum_{q} e_{q}^{2} \Delta q(x,Q^{2}) D_{q}^{h}(z,Q^{2})}{\displaystyle \sum_{q} e_{q}^{2} q(x,Q^{2}) D_{q}^{h}(z,Q^{2})}$$

 $A^{\rm SIDIS} \sim \rm pdf \otimes FF$

Nonperturbative fragmentation functions $D_q^h(z, Q^2)$ need to be determined from experiment!

 $\gamma^*(q)$

 $\ell(k,\lambda)$

N(P,S)

 $z = \frac{E_h}{dt}$

B. Badelek (Warsaw)

Frontiers..., 2019 37 / 82

 $D_a^h \neq D_{\bar{a}}^h$

Now including spin:

helicity and transversity PDFs

B. Badelek (Warsaw)

Nucleon structure

Frontiers..., 2019 38 / 82

э

(B)

Measurements of $g_1^{p}(x, Q^2)$ and $F_2^{p}(x, Q^2)$

COMPASS NLO QCD at $W^2 > 10 (\text{GeV}/c^2)^2$ dashed line: extrapolation to $W^2 < 10 (\text{GeV}/c^2)^2$

HERA, Eur.Phys.J. C75 (2015) 580

< ロト < 同ト < ヨト < ヨト

B. Badelek (Warsaw)

Frontiers..., 2019 39 / 82

JAM NLO fit to world inclusive data $(A_{\parallel}, A_{\perp})$

JAM: Jefferson Lab. Angular Momentum Collaboration

Included JLab data $W^2 > 4 \text{ GeV}^2 \Longrightarrow$ reduced errors for valence & sea at x > 0.1

JAM, PRD 93 (2016) 074005

D. Daueler (Walsaw)	B. E	ade	lek (Warsaw)	
---------------------	------	-----	-------	---------	--

イロト イポト イヨト イヨト

Inclusive $g_1(x, Q^2)$ at EIC (pseudo-data)

Errors statistical (EIC: expected, modest parameters); bands: from gluon helicity uncertainty

arXiv:1509.06489

"White paper", arXiv:1212.1701

イロト イポト イヨト イヨト

B. Badelek (Warsaw)

Nucleon structure

Frontiers..., 2019 41 / 82

Polarisation of quark sea

• Δs puzzle. Strange quark polarisation (COMPASS): $2\Delta S = \int_0^1 (\Delta s(x) + \Delta \bar{s}(x)) dx = -0.09 \pm 0.01 \pm 0.02$ from incl. asymmetries + SU₃,

0.02 ×∆ū

SS11/HKNS FFs

SS11(HKNS FFs)

LSS10(DSS FFs)

LSS06(DIS)

x∆d

-0.03

0.3

0.2

0.1

 $Q^2 = 2.5 \text{ GeV}^2$

0.01

-0.01

0.03

0.02

0.01

while from SIDIS it is compatible with zero but depends upon chosen FFs.

Most critical: $R_{SF} = \frac{\int D_{\bar{s}}^{K^+}(z)dz}{\int D_{u}^{K^+}(z)dz}$

 \implies COMPASS extracts it from multiplicities.

• Example of sensitivity to FFs at Q^2 =2.5 (GeV/c)²

Measurement of the gluon polarization Δg at RHIC

The proton spin "puzzle" (> 30 yers old!)

• For the proton in \hbar units:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta \mathbf{G} + \Delta \mathbf{L}$$

 $\Delta \Sigma \sim 0.3$, $\Delta G \sim \text{sizable}?$, $\Delta L = ?$

Do we approach a solution of the proton spin puzzle?

- Yes, but an independent measurement of ΔL needed; from the 3D (5D) analysis? Plans at: COMPASS, BNL, JLab.
- Electron-Ion Collider, the "imaging machine" will faciliate an accurate measurement of ΔG and an access to ΔL.

B. Badelek (Warsaw)

Nucleon structure

Parton separation at EIC pseudo-data (inclusive and semi-inclusive)

DIS + SIDIS

From "White paper", arXiv:1212.1701

EW DIS

- ∆g(x) from scaling violation
- > $\Delta \overline{u}, \Delta \overline{d}, \Delta s$ from SIDIS

 $\begin{array}{l} & \mbox{Flavor separation at high } Q^2 \mbox{ via CC DIS:} \\ & g_1^{W^+} = \Delta \overline{u} + \Delta d + \Delta \overline{c} + \Delta s \\ & g_1^{W^-} = \Delta u + \Delta \overline{d} + \Delta c + \Delta \overline{s} \\ & g_5^{W^+} = \Delta \overline{u} - \Delta d + \Delta \overline{c} - \Delta s \\ & g_5^{W^-} = -\Delta u + \Delta \overline{d} - \Delta c + \Delta \overline{s} \end{array}$

(日)

E. Aschenauer, SPIN2016

			A	
в н	sane	ек (vva	reaw i
D. L	auc			10un)

Nucleon structure

Frontiers..., 2019 45 / 82

э

Nucleon spin "puzzle" at EIC

There are more dimensions to explore, e.g. 3-D!

chiefly due to failures of the 1-D picture

B. Badelek (Warsaw)

Nucleon structure

Frontiers.... 2019 47 / 82

With 3D projections, we will be entering a new age. Something which was never technically possible before **77** James Cameron

Partonic structure of the nucleon; distribution functions

 $h_1^{\perp}(\text{SIDIS}) = -h_1^{\perp}(\text{DY})$ $f_{1\mathrm{T}}^{\perp}(\text{SIDIS}) = -f_{1\mathrm{T}}^{\perp}(\text{DY})$

- OBS! transversity PDF is chiral-odd; may only be measured with another chiral-odd partner, e.g. fragmentation function.
- TMD parton distributions need TMD Fragmentation Functions!

B. Badelek (Warsaw)

Nucleon structure

Frontiers..., 2019 50 / 82

What does Sivers effect do?

3D maps of partonic distribution

A. Bacchetta, DIS2017

	B. Bad	lelek i	(Warsaw))
--	--------	---------	----------	---

(4) (2) (4) (3)

COMPASS SIDIS-DY bridge (from R. Longo, Low-x 2018)

comparable x:Q² kinematic coverage

minimization of possible Q² evolution effects

Unique experimental environment to test TMD universality and Sivers and Boer-Mulders sign change

29/08/2018	Riccardo Longo	9	$\mathcal{O}\mathcal{A}\mathcal{O}$
B. Badelek (Warsaw)	Nucleon structure	Frontiers, 2019	52 / 82

SIVERS FUNCTION SIGN CHANGE

Sivers function SIDIS = - Sivers function Drell-Yan

B. Badelek (Warsaw)

Frontiers..., 2019 53 / 82

Sivers function at EIC

From "White paper", arXiv:1212.1701

EIC acceptance for Sivers meas.

イロト イポト イヨト イヨト

O. Eyser, SPIN2016

Universal QCD fits

Pushing the **precision frontier** of **QCD fits** requires accounting for **cross-talk** between different **non-perturbative QCD** quantities

Towards universal/integrated global analyses of non-perturbative QCD

Juan Rojo	52 Proton S	tructure and PDFs, DIS2019	2 a C
B. Badelek (Warsaw)	Nucleon structure	Frontiers, 2019	55 / 82

...Proton even 5-D!

B. Badelek (Warsaw)

Nucleon structure

Frontiers..., 2019 56 / 82

э

イロト イポト イヨト イヨト

B. Badelek (Warsaw)

see, e.g., C. Lorce, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11) Nucleon structure Frontiers..., 2019 57 / 82

Descriptions of *pdf*^s in the nucleon

From "White paper", arXiv:1212.1701

イロト イポト イヨト イヨト

B. Badelek (Warsaw)

Nucleon structure

Frontiers..., 2019 58 / 82

Take-away menu: proton structure very rich!

- 1-D proton structure accurate and well controlled.
- Experimental results suggest a necessity to go beyond the collinear parton picture of the nucleon.
- New promising concepts:
 - 1. Transverse Momentum Dependent distributions, TMD
 - 2. Generalised Parton Distributions, GPD (not discussed).
- Data from: SIDIS, pp, Drell-Yan, e⁺e[−] (not discussed)
 ⇒ formulation of the 3-D imaging of the nucleon well advanced.
- Expected: new data from COMPASS, RHIC, JLab at 12 GeV and the forthcoming Electron Ion Collider!
- Topical issue of EPJA dedicated to the 3-D nucleon structure: EPJ A52 (2016) no.6 (15 articles)!

イロト イポト イヨト イヨト

SPARES

B. Badelek (Warsaw)

Nucleon structure

Frontiers..., 2019 60 / 82

æ

< □ > < □ > < □ > < □ > < □ >

Semi-Inclusive Deep Inelastic Scattering

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2}\frac{y^2}{2\left(1-\varepsilon\right)}\left(1+\frac{\gamma^2}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_h F_{UU}^{\cos\phi_h}\right.\\ &+\varepsilon\cos(2\phi_h) F_{UU}^{\cos\phi_h}+\lambda_e\,\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_h F_{LU}^{\sin\phi_h}\right.\\ &+S_{\parallel}\left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_h F_{UL}^{\sin\phi_h}+\varepsilon\sin(2\phi_h) F_{UL}^{\sin\phi_h}\right] + S_{\parallel}\lambda_e\left[\sqrt{1-\varepsilon^2} F_{LL}+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_h F_{LL}^{\cos\phi_h}\right] \\ &+|S_{\perp}|\left[\sin(\phi_h-\phi_S) \left(F_{UT,T}^{\sin(\phi_h-\phi_S)}+\varepsilon F_{UT,L}^{\sin(\phi_h-\phi_S)}\right)\right.\\ &+\varepsilon\sin(\phi_h+\phi_S) F_{UT}^{\sin(\phi_h+\phi_S)}+\varepsilon\sin(3\phi_h-\phi_S) F_{UT}^{\sin(3\phi_h-\phi_S)} \\ &+\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S F_{UT}^{\sin\phi_S}+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h-\phi_S) F_{UT}^{\sin(3\phi_h-\phi_S)} \\ &+\sqrt{2\varepsilon(1+\varepsilon)}\cos(\phi_h-\phi_S) F_{LT}^{\cos(\phi_h-\phi_S)}+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_S F_{LT}^{\cos\phi_S} \\ &+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h-\phi_S) F_{LT}^{\cos(2\phi_h-\phi_S)}\right] \bigg\}, \end{aligned}$$

IWHSS19, Aveiro, 24 June 2019

F. Bradamante

3 LP 7

1.4.1

B. Badelek (Warsaw)

Nucleon structure

Frontiers..., 2019 61/82

-

Semi-Inclusive Deep Inelastic Scattering π,Κ,... $\frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h_{\perp}}^2} =$ $\frac{\alpha^2}{x u O^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h \left[F_{UU}^{\cos \phi_h} \right] \right\}$ $\begin{array}{c} \boldsymbol{h}_{1}^{\perp} \otimes \boldsymbol{H}_{1}^{\perp} \\ + \varepsilon \cos(2\phi_{h}) F_{UU}^{\cos 2\phi_{h}} + \lambda_{e} \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_{h} F_{LU}^{\sin \phi_{h}} \end{array}$ $h_{1L}^{\perp} \otimes H_1^{\perp}$ $+ S_{\parallel} \left[\sqrt{2 \varepsilon (1 + \varepsilon)} \sin \phi_h \overline{F_{UL}^{\sin \phi_h}} + \varepsilon \sin(2\phi_h) \overline{F_{UL}^{\sin 2\phi_h}} \right] + S_{\parallel} \lambda_e \left[\sqrt{1 - \varepsilon^2} F_{LL} + \sqrt{2 \varepsilon (1 - \varepsilon)} \cos \phi_h \overline{F_{LL}^{\cos \phi_h}} \right]$ $f_{1T}^{\perp} \otimes D_1$ $+ |S_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) + h_{1T}^{\perp} \otimes H_1^{\perp} \right]$ $+ \varepsilon \sin(\phi_h + \phi_S) \left[F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(\phi_h - \phi_S)} \right]$ $h_1 \otimes H_1^{\perp} \leftarrow$ 14 independent + $\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S F_{UT}^{\sin\phi_S}$ + $\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)}$ azimuthal modulations $+ |\mathbf{S}_{\perp}|\lambda_{e} \sqrt{1 - \varepsilon^{2}} \cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} + \sqrt{2 \varepsilon (1 - \varepsilon)} \cos \phi_{S} F_{LT}^{\cos \phi_{S}}$ amplitudes of the $+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h-\phi_S)F_{LT}^{\cos(2\phi_h-\phi_S)}$ modulations → TMD PDFs E Bradamante IWHSS19, Aveiro, 24 June 2019

B. Badelek (Warsaw)

Frontiers..., 2019 62 / 82

Semi-Inclusive Deep Inelastic Scattering

MAJOR RESULT: in the past 15 years 2 of these new PDF's have been measured and shown to be different from zero

by COMPASS and HERMES

the transversity PDF

Collins asymmetry $\sim h_1 \otimes H_1^{\perp}$ amplitude of the sine modulation in $\phi_h + \phi_s - \pi$

the Sivers PDF

Sivers asymmetry $\sim f_{1T}^{\perp} \otimes D_1$ amplitude of the sine modulation in $\phi_h - \phi_s$

A STEP TOWARDS THE 3-D STRUCTURE OF THE NUCLEON

B. Badelek (Warsaw)	Nucleon structure	Frontiers, 2019	63 / 82
IWHSS19, Aveiro, 24 June 2019		F. Bradamante	500

IWHSS19, Aveiro, 24 June 2019		F. Bradamante	
	4	부가 가려가 가 좋기 가 좋기 나 좋	e sa co
B. Badelek (Warsaw)	Nucleon structure	Frontiers, 2019	65 / 82

Drell-Yan process at COMPASS

• $\pi^- + p \rightarrow \mu^+ \mu^- + X$, beam: 190 GeV/*c*, target: \perp polarised proton (NH₃)

Frontiers..., 2019 66 / 82

Drell-Yan process at COMPASS,...cont'd

• Sivers asymmetry in bins of $x_N, x_\pi, x_F, q_T, M_{\mu\mu}$

The 14 and 14

A I > A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Drell-Yan process at COMPASS,...cont'd

...and other (integrated, transverse spin) asymmetries

Drell-Yan and SIDIS at COMPASS; Sivers asymmetry

Sivers asymmetry results from SIDIS at the DY $Q = M_{\mu\mu}$ scale bins (all other Transverse Spin Asymmetries measured as well)

COMPASS, Phys. Lett. B770 (2017) 138

A I > A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Frontiers..., 2019 69 / 82

Hadron Eelectron Ring Accelerator (1990-2007) legacy 300 authors, 70 institutions

- A collider of protons and electrons (positrons); $\sqrt{s} \sim$ 300 GeV; \sim 0.5 fb $^{-1}$ /exp.
- 6.3-kilometre superconducting p ring; separate (normalcond.) for e⁺/e⁻;
 2 intersection points, detectors: ZEUS and H1
- Most precise picture of inner proton dynamics (without spin) => QCD (-> NNLO)
- Unification of electromagnetic and weak forces at high energies
- Joint ZEUS+H1 set of DIS data: HERAPDF2.0 (LO, NLO, NNLO)
- $\bullet\,$ Tension between the data and QCD at $Q^2 \lesssim 15~{\rm GeV}^2$
- No deviations from SM > 2.5σ ; compositeness: $R_q < 0.43 \cdot 10^{-18}$ m

Nucleon structure

Frontiers..., 2019 70 / 82

HERA's non-legacy

- Insufficient luminosity for high x precision or searches
- Lack of Q^2 lever-arm restricts precision on low x for gluons
- Limited quark flavour info (no deuterons to separate u and d)
- Protons not polarised except HERMES (no spin, transverse structure...)
- No nuclear targets

$\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow$ These limitations addressed by EIC (and LHeC)

after P. Newman, DIS2016

イロト イポト イヨト イヨト

3-D nucleon; one attempt

- Transverse Momentum Dependent distributions: parton intrinsic k_T taken into account
- TMD related to quark angular momentum, L!
- TMD may be studied in 2 ways e.g. at COMPASS:
 - semi-inclusive DIS (polarised muons on unpolarised/transversely polarised target)
 - Drell-Yan process (π beam on unpolarised/transversely polarised target)

DY Obs.: initial state interactions!

イロト イポト イヨト イヨト 一日

Frontiers.... 2019

72/82

B. Badelek (Warsaw)

Nucleon structure
COMPASS spin-dependent asymmetries in DY-SIDIS

First results from RHIC, $p^{\uparrow}p \to W^{\pm}X$ STAR Collaboration, PRL 116 (2016) 132301

some hints at sign change of Sivers function

B. Badelek (Warsaw)

Nucleon structure

M. Anselmino, Bad Honnef 2017 Frontiers..., 2019

74 / 82

High energy polarised muon beam at CERN

B. Badelek (Warsaw)

Nucleon structure

COMPASS polarised targets: NH₃ and ⁶LiD

- * Two (three) target cells, oppositely polarised
 * Polarisation reversed every 8 h (less frequent after 2005) by field rotation
- * Material: solid ⁶LiD (NH₂)
- * Polarisation: ~ 50% (~90%), by the Dynamical Nuclear Polarisation
- * Dilution: f~0.4 (~0.15)
- * Polar acceptance: ~70 mrad (~180 mrad after 2005)

Frontiers.... 2019 76/82

NLO QCD fit: results for $g_1^{\rm p}, g_1^{\rm d}, g_1^{^{3}{\rm He}}$ inclusive data, $W^2 > 10 \; ({\rm GeV}/c^2)^2$

- Statistical uncertainties (dark bands) « systematic (light bands)
- Gluon polarisation poorly constraint ⇒ "direct" methods
- Quark spin contribution to the nucleon spin: 0.26 $< \Delta \Sigma <$ 0.36 (due to poor Δg)

Semi-inclusive asymmetries and parton distributions

• COMPASS: measured on both proton and deuteron targets for identified, positive and negative pions and (for the first time) kaons

COMPASS: LO DSS fragm. functions and LO unpolarised MRST assumed here.

NLO parameterisation of DSSV describes the data well.

B. Badelek (Warsaw)

Frontiers..., 2019 78 / 82

Single Spin Asymmetry of W

B. Badelek (Warsaw)

Nucleon structure

79/82

Direct measurements of $\Delta g(x)$

Direct measurements – *via* the cross section asymmetry for the photon–gluon fusion (PGF) with subsequent fragmentation into $c\bar{c}$ (LO, NLO) or $q\bar{q}$ (high $p_{\rm T}$ hadron pair (LO)): $A_{\gamma \rm N}^{\rm PGF} \approx \langle a_{\rm LL}^{\rm PGF} \rangle \frac{\Delta g}{a}$

COMPASS from SIDIS on d for any $(p_T)_h$ and at LO:

B. Badelek (Warsaw)

Results for the Collins asymmetry for protons (SIDIS)

COMPASS, Phys.Lett, B744 (2015) 250

- Collins asymmetries for proton measured for +/- unidentified and identified hadrons...
- ... are large at $x \ge 0.03$ and consistent with HERMES (in spite of different Q^2 !)
- but negligible for the deuteron
- COMPASS data on p,d + HERMES data on p + BELLE on e^+e^- : $\Longrightarrow \Delta_T u, \ \Delta_T d$
- Transversity also obtained from 2-hadron asymmetries ٠ (and "Interference Fragmentation Function")

B. Badelek (Warsaw)

Nucleon structure

Frontiers.... 2019 81/82

Results for the Sivers asymmetry for protons (SIDIS)

COMPASS, Phys.Lett. B744 (2015) 250

M.Anselmino et al., JHEP 1704(2017)046

- Sivers asymmetries for proton measured for +/– identified hadrons are large for π⁺, K⁺...
- ...and even larger at smaller Q^2 (HERMES)
- COMPASS deuteron data show very small asymmetry

Frontiers..., 2019 82 / 82