

Electrons for Neutrinos

A. Papadopoulou EINN2019, Paphos, Cyprus October 31, 2019

Future v Experiments

• Extraction of oscillation parameters by making high precision measuments

• Demand for good understanding of cross-sections & energy reconstruction

Key role

Availability of e-scattering data

• Accuracy of *v* energy reconstruction methods using e-scattering data

• Benchmarking of *v* event generator models against e-scattering data

Energy Reconstruction Significance

Neutrino Oscillations

Neutrino Oscillations

Neutrino Oscillations

Error in $E_{reco} \Rightarrow$ Error in extracted oscillation parameters

T2K, Phys. Rev. D 91, 072010 (2015)

Energy Reconstruction

Cherek	kov D	etectors

Leptons & Pions
No Protons or Neutrons

Use lepton kinematics assuming QE interaction

$$E_{QE} = \frac{m_n^2 - (m_p - \epsilon)^2 - m_l^2 + 2(m_p - \epsilon)E_l}{2(m_p - \epsilon - E_l + p_l \cos(\theta_l))}$$

Tracking Detectors

 Charged particles & π⁰
 Progress Towards Neutrons

Use final-state calorimetry assuming low energy excitations

$$E_{cal} = E_l + T_p + \epsilon$$

Accurate only if PWIA is applicable!

Energy Reconstruction

Cherek	kov D	etectors

Leptons & Pions
No Protons or Neutrons

Use lepton kinematics assuming QE interaction

$$E_{QE} = \frac{m_n^2 - (m_p - \epsilon)^2 - m_l^2 + 2(m_p - \epsilon)E_l}{2(m_p - \epsilon - E_l + p_l \cos(\theta_l))}$$

Tracking Detectors

 Charged particles & π⁰
 Progress Towards Neutrons

Use final-state calorimetry assuming low energy excitations

$$E_{cal} = E_l + T_p + \epsilon$$

Accurate only if PWIA is applicable! Which is not always the case...

Generator Modeling

Use final state particles to reconstruct v energy & direction

Generator Modeling

Models: Effective. Often Empirical. Semi–classical (no interference terms) ⇒ MUST tune to data!

MicroBooNE LArTPC Extraction of exclusive 1µ1p cross–sections

v-scattering

Work in progress

Work in progress

- Very similar interactions (vector part)
 - Nuclear effects practically identical
 - Known beam energy
 - Benchmark *v* event generators by running in e-mode

Genie Event Generator

- Used by many neutrino experiments in the US
 - Can simulate both e- and ν -events

Genie Event Generator

Lots of issues discovered for e-scattering

Tried to identify and fix them

When we started

12 C @ 0.961 GeV & $\theta = 37.5^{\circ}$

Inclusive channel \sim ok. What about exclusive channels?

Exclusive Channels

 Charged particles & π⁰
 Progress Towards Neutrons

Use final-state calorimetry assuming low energy excitations

$$E_{cal} = E_l + T_p + \epsilon$$

CLAS@JLab

Targets: ⁴He, ¹²C, ⁵⁶Fe Energies: 1.1, 2.2 and 4.4 GeV

CLAS Detector

- Almost 4π acceptance
- Charged particles (8-143°): $P_p > 300 \text{ MeV/c}$ $P_{\pi} > 150 \text{ MeV/c}$
 - Neutral particles: EM calorimeter (8-75°) and TOF (8-143°)

Neutrino Game

Neutrino Game

As close to Quasi-Elastic kinematics as one can get

- Select "clean" (e,e'p) events
- Scale electron data with 1 / σ_{Mott}
 - Study energy reconstruction
 - Compare to event generators

Non-QE interactions lead to multi-hadron final states

Non-QE interactions lead to multi-hadron final states Gaps make them look like (e,e'p) events (e,e'p π background dominates) 160 $^{-12}$ 120 80 40 100 200 300 Deg.]

Non-QE interactions lead to multi-hadron final states Gaps make them look like (e,e'p) events

Driven Correction

- Measured (e,e'p π) events
- Rotate p, π around \vec{q} to determine π detection efficiency
 - Subtract undetected (e,e'p π)

Background Subtraction

Non-QE interactions lead to multi-hadron final states Gaps make them look like (e,e'p) events

Driven Correction

Repeat the process for higher multiplicities

 $(2p, 3p, 2p + \pi \text{ etc})$

Energy Reconstruction

Energy Reconstruction Methods

Calorimetric Approach

(lepton & proton info)

VS

QE Approach

(only lepton kinematics)

Energy Reconstruction Methods

Calorimetric Approach

(lepton & proton info)

VS

QE Approach

(only lepton kinematics)

*E*_{QE} has worse peak resolution than *E*_{cal}
Long tail for both *E*_{QE} and *E*_{cal}

Large A dependence

Large E dependence

Better reconstruction at lower energies

Event fraction within 5% of E_{beam}

	2.2 GeV		4.4GeV	
	E _{QE} 1e	E _{Cal} 1e1p	E _{QE} 1e	E _{Cal} 1e1p
⁴ He	25%	46%	16%	32%
¹² C	22%	39%	13%	27%
⁵⁶ Fe	17%	25%	10%	16%

Not necessarily bad if our generators can reproduce the energy spectrum

Generator vs (e,e'p) data

Generator vs (e,e'p) data

44/75

Missing Momentum

Generator vs (e,e'p) data

Implications to

DUNE Goals

Extraction of oscillation parameters with an accuracy of $\sim 5 \%$

DUNE Goals

Extraction of oscillation parameters with an accuracy of $\sim 5 \%$

But energy reconstruction deviations & data-MC disagreement

DOOMED?

Attacking from all sides

e-scattering

v-scattering

Event Generators

51/75

Attacking from all sides

Event Generators

More theory input

New Proposal

CLAS12 Spectrometer @ JLab

- Luminosity: x10 higher than CLAS6!
 - Charged particles: $5^{o} 120^{o}$
 - Neutrons: $5^{o} 120^{o} \& 160^{o} 170^{o}$
 - Threshold: $\sim 300 \text{ MeV/c}$

New Proposal

High statistics for semi-inclusive and exlusive data sets on multiple targets at multiple energies

New Proposal

4 He, 12 C, ${}^{\overline{16}}$ O, 40 Ar, 120 Sn

Beam Energies

1.1, 2.2, 4.4, 6.6 GeV DUNE Spectrum

Used e-scattering events to test accuracy of E_{reco} and to benchmark event generators

Wrap Up

Used e-scattering events to test accuracy of E_{reco} and to benchmark event generators

- E_{reco} shows significant deviations from E_{true}
- Good data-generator agreement in inclusive channel
 - Significant disagreement in exclusive channels

Next Steps

• Further event generator development & benchmarking against electron scattering data

• New data for exclusive analyses & study of energy reconstruction accuracy

$e4\nu$ Team

Mariana Khachatryan [ODU]

Afroditi Papadopoulou [MIT]

Dr. Adi Ashkenazi [MIT]

Backup Slides

Oscillation Parameters PDG 2018

Parameter	best-fit	3σ
$\Delta m_{21}^2 \ [10^{-5} \text{ eV}^2]$	7.37	6.93 - 7.96
$\Delta m^2_{31(23)} \ [10^{-3} \ {\rm eV}^2]$	2.56(2.54)	$2.45 - 2.69 \ (2.42 - 2.66)$
$\sin^2 \theta_{12}$	0.297	0.250 - 0.354
$\sin^2 \theta_{23}, \Delta m^2_{31(32)} > 0$	0.425	0.381 - 0.615
$\sin^2 \theta_{23}, \Delta m^2_{32(31)} < 0$	0.589	0.384 - 0.636
$\sin^2 \theta_{13}, \ \Delta m^2_{31(32)} > 0$	0.0215	0.0190 - 0.0240
$\sin^2 \theta_{13}, \Delta m^2_{32(31)} < 0$	0.0216	0.0190 - 0.0242
δ/π	1.38(1.31)	2σ : (1.0 - 1.9)
		$(2\sigma: (0.92-1.88))$

Neutrino Physics

In the Standard Model

- 3 neutrinos of 3 different flavors (and 3 anti-neutrinos)
 - massless neutrinos

• neutrinos only interact weakly (W and Z bosons mediate the interactions)

Beyond the Standard Model

Neutrino Oscillations: New Physics \rightarrow neutrinos have mass

However, neutrinos are still the least understood particles ...

No Interference Terms

No Interference Terms

Identified Genie Issues

- Quasi–Elastic Channel
 - Rosenbluth cross-section
 (Mott cross-section, Jacobean)
- MEC Channel
 - Empirical model (missing boost from center–of–mass frame to lab frame)

Identified Genie Issues

• Resonant Channel

 Berger–Sehgal cross–section (used correct couplings for EM interactions, missing multiplication by Jacobean)

and this is the change with the greatest impact.

First Results on ⁴⁰Ar

QE Peak Selection

High impact study of bias in neutrino oscillation analyses:

- Identify and correct biases due to incident energy reconstruction,
- Identify and correct biases due to neutrino event generators
 - Final State Interactions,
 - Resonance production,
 - Multinucleon effects (2p2h/MEC/SRC)

Summary of July Trento workshop: "MIT/ODU group's comparisons to electrons is shining a harsh light on this model and motivating efforts to improve the situation."

Fractional Feed Down

Energy resolution worsens at higher energies

Energy Resolution

QE Peak

Sanity check

Overwhelming Support

Missing Momentum Slices

All interaction channels

Non-negligible differencies for higher P_{\perp}^{miss} slices