Results of DVCS measurement at

UNIVERSITAT MAINZ

COMPASS Braßgerätz der physikalischen Brasdiegenfanzchung Johannes Giarra on behalf of the COMPASS collaboration

EINN2019

27. Oct - 02. Nov. Paphos, Cyrpus

Introduction

Classical quark-parton-model (QPM):

Nucleon described as longitudinal beam of fast moving quarks

Assumptions:

- No transverse momentum
 - \rightarrow Only longitudinal momentum fraction (x_{Bj})
- Quarks are free
 - \rightarrow No interaction between quarks considered

Structure of nucleon expressed by structure functions $F_1(x_{Bj}), F_2(x_{Bj})$ (unpolarized) $g_1(x_{Bj}), g_2(x_{Bj})$ (polarized)

Structure functions \propto Parton Distribution Functions PDFs(x_{Bj})

Generalized Parton Distribution functions (GPDs)

Consider transverse extension of the nucleon ⇒ Generalized Parton distribution functions (GPDs)

Exclusive photon production: $\gamma^* {\it N} \rightarrow \gamma {\it N} \label{eq:gamma}$

4 GPDs for each quark flavour $\begin{array}{c}
H^{f}(x,\xi,t) & E^{f}(x,\xi,t) \\
\widetilde{H}^{f}(x,\xi,t) & \widetilde{E}^{f}(x,\xi,t)
\end{array}$

Spin flip No spin flip

Set of kinematic dependence:

• x, $\xi \rightarrow$ longitudinal momentum fractions $x_{Bj} \sim 2\xi/(1+\xi), x \rightarrow$ internal variable, model dependent

• $t \rightarrow$ momentum transfer to nucleon squared

Spacial distribution of quarks in the nucleon

- Momentum space to position space: $\Delta \rightarrow b$ (Fourier Transformation) *b*:Impact parameter (transverse position respect to proton c.m.))
- Forward limit $\xi = 0$

Probability density function

$$q^{f}(x, \boldsymbol{b}) = rac{1}{(2\pi)^{2}} \int d^{2}\Delta e^{-i\boldsymbol{b}\cdot\Delta} H^{f}(x, \xi = 0, t)$$

Interpretation:

Probability to find a parton (flavour f) having a longitudinal momentum xP at a transverse distance b

ightarrow Tomography of the nucleon

Generalized Parton Distribution functions (GPDs) II

GPDs not experimental observables \rightarrow expressed by ...

$$Re\mathcal{H}(\xi,t) \stackrel{LO}{=} \mathcal{P} \int_{-1}^{1} dx H(x,\xi,t) \frac{1}{x-\xi}$$
$$Im\mathcal{H}(\xi,t) \stackrel{LO}{=} H(\pm\xi,\xi,t)$$

Exclusive photon production:

 $\gamma^* N \rightarrow \gamma N$ \Rightarrow Sensitive to CFFs

Exclusive photon production @ COMPASS

Deeply Virtual Compton Scattering (DVCS)

$$\mu + {\it p} \rightarrow \mu' + {\it p}' + \gamma$$

Bethe-Heitler (Bremsstrahlung)

 \rightarrow same final state

Cross section of excl. photon production:

$$\sigma(\mu p \rightarrow \mu' \gamma p') = \sigma_{DVCS} + \sigma_{BH} + \sigma_{Int.}$$

Measurement @ COMPASS

Kinematic dependencies:

- Q^2 : 4-momentum of γ^*
- ν : Energy of γ^*
- *t* : Momentum transfer to proton
- ϕ : Angle between scattering plane (γ^*) and production plane (γ)

$\Rightarrow \text{Measure angular distribution of real} \\ \textbf{photon}$

Identify exclusive photon events:

Incoming muon Scattered muon Recoil proton Real photon

overconstrained

Data taking @COMPASS:

- 2012 test run for 4 weeks
 → Analysis finished and published
- $\bullet~$ Long runs dedicated to DVCS in 2016/17
 - \rightarrow Analysis ongoing

COMPASS setup (2016/2017)

Analysis of 2016 data

Results of 2012 analysis

COMPASS spectrometer setup (2016/17)

Two staged forward spectrometer SM1 + SM2

- Liquid hydrogen target (2.5m, Ø4cm)
- Proton recoil detector (CAMERA)
- ECAL0, ECAL1 and ECAL2 (Photon detection)
- Muon trigger system (μ ID)
 - \sim 300 tracking detector planes

COMPASS spectrometer setup (2016/17)

The road to the DVCS cross section

Target position (2016)

31.10.2019

13 / 27

Johannes Giarra (KPH Mainz)

13 / 27

EINN2019

Stable flux conditions:

- Slow extraction of SPS beam
 - Intensity rises
 - ${\scriptstyle \circ }$ Flat top for ${\sim}5{\rm s}$
 - Intensity drops
- Interested in flat top region $ightarrow \pm$ 15% of flat top avg.
- Define begin and end of spill (Time in Spill window)
- Relevant for flux analysis (typ. Flux ${\sim}7{\cdot}10^7~\mu/{\rm spill}$)

Stable flux conditions:

- Slow extraction of SPS beam
 - Intensity rises
 - ${\scriptstyle \circ }$ Flat top for ${\sim}5{\rm s}$
 - Intensity drops
- Interested in flat top region $ightarrow \pm$ 15% of flat top avg.
- Define begin and end of spill (Time in Spill window)
- Relevant for flux analysis (typ. Flux ${\sim}7{\cdot}10^7~\mu/{\rm spill}$)

Selection of exclusive single photon events

Select incoming muon

 \rightarrow Use same selection as for muon flux

Search scattered muon

- Vertex with only one outgoing charged track (same charge as inc. muon)
- Sufficient momentum transfer to proton

Get real photons

- Check for a single photon
- Photon energy above a defined threshold in one ECAL

• Get recoil proton canditates

- TOF measurement
- Identify proton candidates
- \rightarrow Improve event selection by adding "exclusivity cuts"

Cuts:

Incoming μ :

- Track would pass full target length
- 140 GeV/c< $p < \!\! 180$ GeV/c

Scattered μ :

•
$$Q^2 > 1 \; ({\rm GeV/c})^2$$

• 0.05 GeV/c< y <0.95 GeV/c

Real photon:

- ECAL0 thr. = 4 GeV
- ECAL1 thr. = 5 GeV
- $\, \bullet \,$ ECAL2 thr. $= 10 \ {\rm GeV}$

Proton candidates:

• $\beta > 0.1$

Exclusivity cuts

Difference between spectrometer prediction and CAMERA measurement

First presented at DIS2019

Only 13% of the 2016/2017 data set

BH process **very well known** over a wide kinematic range \rightarrow MC sample for the BH (HEPGEN)

- Kinematic range where **BH** is dominant
 - \rightarrow Normalice real and MC data according their luminosity
 - \rightarrow Cross check of luminosity
- DVCS contribution by substracting the BH from the data

BH process **very well known** over a wide kinematic range \rightarrow MC sample for the BH (HEPGEN)

- Kinematic range where **BH** is dominant
 - \rightarrow Normalice real and MC data according their luminosity
 - \rightarrow Cross check of luminosity
- DVCS contribution by substracting the BH from the data

BH process **very well known** over a wide kinematic range \rightarrow MC sample for the BH (HEPGEN)

- Kinematic range where **BH** is dominant
 - \rightarrow Normalice real and MC data according their luminosity
 - \rightarrow Cross check of luminosity
- DVCS contribution by substracting the BH from the data

BH process **very well known** over a wide kinematic range \rightarrow MC sample for the BH (HEPGEN)

- Kinematic range where **BH** is dominant
 - \rightarrow Normalice real and MC data according their luminosity
 - \rightarrow Cross check of luminosity
- DVCS contribution by substracting the BH from the data

Status 2016

Continue with 2012 data

Photons via decay of

 $\pi^{0} \to \gamma \gamma$

One photon as exclusive photon (above ECAL thr.) detected

π^0 production channel:

- Exclusive: $\mu + p \rightarrow \mu + p + \pi^0$
- Semi inclusive: $\mu + p \rightarrow \mu + \pi^0 + X$

Handling the π^0 background

Scenario 1:

- Both γ are being detected
- Contribution can be extracted directly from the data

Method:

- Combining "high" energetic photon to all other photons ($E_{\gamma} < ECAL_{thr}$) (within one event) \Rightarrow photon pairs
 - \rightarrow Invariant mass spectrum
 - $\Rightarrow \pi_0 \text{ peak}$

Yield of Monte-Carlos I

Scenario 2:

- One photon escapes detection
- MC Simulation is needed to describe the data

Simulation of ...

exclusive π_0 production (via HEPGEN++) semi-inclusive π_0 production (via LEPTO)

Yield of each MC to describe the data?

Idea:

- Choose variables sensitve to additional particles in final state (semi inclusive)
- Fit the MC samples to the shape of the distribution in the data

Acceptance $a(Q^2, |t|, \phi)$

 $\rightarrow \nu$ DVCS domain

Analyse the t-slope of the cross section

To go from μp to $\gamma^* p$:

 $\frac{d\sigma^{\mu\rho}}{dQ^2d\nu d\Phi dt} \rightarrow \frac{d\sigma^{\gamma^*\rho}}{dtd\phi} \text{ by multiplying with } \frac{1}{\Gamma(Q^2,\nu,E_{\mu})}$

 $\Gamma(Q^2, \nu, E_\mu)$: Flux of transverse virtual photons

Analyse the t-slope of the cross section

To go from μp to $\gamma^* p$:

Thank you for your attention.