Virtual Compton Scattering on the proton: New measurements of Generalized Polarizabilities at MAMI

For the MAMI-A1 Collaboration

Hélène FONVIEILLE LPC-Clermont-Fd France EINN 2017 Conference, Paphos, Cyprus

Generalized Polarizabilities

Generalized Polarizabilities

GP is like a Form Factor, but of a deformed nucleon.

P's and GPs are intrinsic properties of the nucleon, and sensitive to its whole excitation spectrum.

Spatial density: where does the polarizability manifest itself most? How far does it extend ? \rightarrow mean square radius ...

Expected to be much more sensitive to the pion cloud than FF. ChPT : $O(p^3)$ result is completely given by pion loops.

Complexity of the magnetic GP: dia- and para-magnetism, almost cancelling each other.

How to measure GPs

Seminal Papers:

D.Drechsel and H. Arenhoevel, NPA233 (1974) 153: $\gamma^*+A \rightarrow \gamma +A$, first concept of Generalized Polarizabilities for nuclei

P.Guichon, G.Q.Liu and A.W. Thomas, NPA591 (1995) 606 : the nucleon case, establishment of a Low-Energy Theorem (LET), which led to an experimental program of VCS at electron accelerators.

D.Drechsel et al., PRC57 (1998) 941: 6 independent GPs at lowest order.

Kinematical range:

- any Q^2 ; explored experimental range: 0.06 GeV² to 1.8 GeV².

```
-Small W = c.m. energy of the [\gamma^*-nucleon] system \Leftrightarrow small energy of the final real photon q'
```

-In practice: stay below the pion threshold (W < m_p+m_{π} , equivalent to q'_{cm} < 126 MeV/c), or slightly above, up to the Delta(1232) region.

Models:

MIT-Bates

Dedicated Experiments since 1995

MAMI-A1

JLab-Hall A

Detect e' and p' in coincidence and identify the reaction by the missing mass (γ)

Extraction of GPs:

- 1) measure (ep \rightarrow ep γ) cross section (5-fold differential $d^5\sigma$ / dk_e, $d\Omega_e$, $d\Omega_{\gamma}^{cm}$)
- 2) make a fit of GPs, using either:

-The LET, or LEX, of Guichon-Thomas (model indep.), NPA591(1995)606 -The Dispersion Relations (DR) Model of Barbara Pasquini et al., EPJA 11(2001)185

The low–energy expansion (LEX) in VCS

P.Guichon, G.Q.Liu and A.W. Thomas , NPA591 (1995) 606

Structure functions:

 $P_{LL} = (...) \alpha_E$ $P_{TT} = [spin GPs]$ $P_{LT} = (...) \beta_M + [spin GPs]$

Polarizability fits

8

2 RCS points:

- Olmos de Leon (EPJA 10 (2001) 207
- Particle Data Book 2014

DR model does NOT predict the scalar GPs. The « DR curve » here includes a further assumption in the model (dipole, with Λ parameter = constant vs Q², and fitted on data).

 $< r_{aE}^{2} > = 2.02$ (+0.39 - 0.59) fm²

Proton charge sq.radius = $< r^{2}_{n} > \sim 0.77$ fm²

MESON CLOUD !

Electric GP does not seem to have a smooth fall-off (e.g.a dipole)

Magnetic GP: small values, therefore large error bars in relative

10

A recent VCS experiment at MAMI-A1: « vcsq2 »

3 new values of Q^2 = 0.1, 0.2, [0.33], 0.45 GeV²

Goal:	measure the (e p \rightarrow e p γ) cross section,					
	essentially below pion threshold, at (3) fixed q_{cm} and $~\epsilon$					
	extract $P_{LL} - P_{TT} / \epsilon$ and P_{LT}					
	and α _E (Q ²) and β _M (Q ²)					
	using LEX and DR methods (+ specificities)					

Data taking: 2011 to 2015 (1500 hours of beamtime)

3 PhD students:

Jure Bericic (Ljubljana Univ., Slovenia) $Q^2 = 0.1 GeV^2$

Loup Correa (Clermont-Fd Univ., France) $Q^2 = 0.2 \text{ GeV}^2$

Meriem BenAli (Clermont-Fd Univ., France) $Q^2 = 0.45 \text{ GeV}^2$

« vcsq2 » experiment: Analysis status

- Systematics: dominant, as in almost all VCS experiments
- \Rightarrow need to reduce them as much as possible !
- \star High quality of the MAMI-A1 setup and data taking

FINAL GOAL: bring the systematic error down to +/- 1.5% on the cross section. Difficult! Presently at the level of +/- 3%.

In order to measure the GPs with small error (reminder: the GP effect is ~ 0-15% of the cross section!)

Analysis still ongoing, results are PRELIMINARY

-Adjustment of all experimental parameters

- -Absolute normalization of the cross section
- -Dealing properly with the proton form factors
- Having a reliable Monte-Carlo simulation of the experiment

Polarizability fits

DR fit: the DR calculation includes the full dependency in q'_{cm} : All experimental phase-space bins are OK a priori. LEX fit: is truncated in q'_{cm} . Are all bins valid ?

$$\frac{d\sigma(LEX) - d\sigma(DR)}{d\sigma(BH + Born)} = \frac{O(q_{cm}^{\prime 2})}{d\sigma(BH + Born)} \leftarrow \begin{array}{l} \text{Higher-Order} \\ \text{estimator} \\ \text{(model-dep.)} \end{array}$$

Need input GPs to calculate this! Take them from experiment.

CRITERION = Put an upper limit on the absolute value of this HO-estimator, e.g. < 3%

« vcsq2 » is the first experiment which tried to anticipate this issue.

Bin selection using the higher-order estimator

VCS: The low-energy expansion is actually in $q'_{cm} / q_{cm} \dots$

epsilon =	0.90	0.91	0.85	0.62	0.63	0.95
g' _{cm} (MeV/c) = g _{cm} (MeV/c) =	115 240	112.5 320	112.5 458	111.5 600	104 714	105 1080
ratio g' _{cm} /g _{cm} =	0.48	0.35	0.25	0.19	0.15	0.10
	\mathbf{X}					

Lesson from the Bates expt ... (PRL97 (2006) 212001)

Important guideline for a LEX fit in VCS !

New « vcsq2 » data:

- OOP kinematics (to access the blue region)

-LEX Fit done with bin selection at $Q^2 = 0.1$ and 0.2 GeV².

- was found not necessary at $Q^2 = 0.45 \text{ GeV}^2$.

In-Plane

8.5 deg OOP

New data:

- $P_{LL}\text{-}P_{TT}/\epsilon\,$ more compatible with a smooth fall-off vs Q^2

- P_{LT} : hard to confirm the presence of an extremum at low Q^2

Still preliminary!

The « puzzle » remains in the region around $Q^2=0.33 \text{ GeV}^2$

Electric and magnetic GP with the new MAMI data

working out the systematic error...

Another measurement performed of $\alpha_E(Q^2)$ at $Q^2=0.2 \text{ GeV}^2$

VCS in the Delta(1232) region

Another method to measure GPs,

explored by Nikos Sparveris (Temple Univ.) et al:

- do (ep \rightarrow ep γ) at W= m $_{\Delta}$, i.e. above the pion threshold.

- LEX does not hold. Use the DR model (B.Pasquini et al.).

1) « vcsDelta » experiment done at MAMI-A1 in 2013

-Can fit GPs but also multipoles of the N-to-Delta transition.

-Here the electric GP and the CMR (C2 to M1 ratio) at $Q^2 = 0.2 \text{ GeV}^2$

2) Future VCS experiment at JLab Hall C (PR12-15-001)

-Extract the electric and magnetic GPs at several Q² in the range 0.3 to 0.7 GeV² using the HMS and SHMS. Cross sections at phi=0 and 180 deg , and phi-asymmetries, + DR fit. (Approved Expt, PAC44, 2016)

Conclusions

Two recent VCS experiments at MAMI:

-new measurement of the scalar GPs at $Q^2 = 0.1$, 0.2 and 0.45 GeV² (below pion threshold, trying to do better LEX fit \leftarrow better kinematics) - new measurement of α_E at $Q^2 = 0.2$ GeV² (VCS in the Delta region)

 \rightarrow deeper insight of the Q²-dependence of GPs: changes the picture !

puzzle w.r.t. previous VCS measurements at Q²=0.33 GeV² : partly remains (for the electric GP) with « selective » LEX fit. Open issue! See what future measurements will get...

VCS continues to be an active field : new experimental proposal at Jlab (N.Sparveris et al.), new theoretical developments (Pascalutsa, Lensky, Vanderhaeghen et al.) : polarizability sum rules connecting RCS and VCS, Baryon ChPT (manifestly Lorentz-invariant) , ...

Richness of photon electroproduction: GPs (VCS, low energy) and GPDs (DVCS, high energy) ... They even start to be connected formally: « Compton Scattering: from deeply virtual to quasi-real », A.Belitsky, D.Mueller and Y.Ji, NPB878 (2014) 214.