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Nucleon spin

– The Ji spin-sum rule: 

JN=
X

q=u;d;s;c···

„
1

2
��q + Lq

«
+ Jg

– JN: Nucleon spin 
– ΔΣq: Contribution from quark intrinsic spin 
– Lq: Contribution from quark orbital motion 
– Jg: Contribution from gluons (no further decomposition)

The nucleon spin decomposition has been a long standing puzzle, ever since first results 
from the  Electron Muon Collaboration (1987) revealed a surprisingly small contribution 
from the quark intrinsic spins

Lattice QCD: ab initio calculation of quark-intrinsic, gluon, and total spin of nucleon 
via nucleon matrix elements of local quark and gluon operators   
Thanks to two major breakthroughs: 

– Reliable calculation of disconnected diagrams 
– Simulations with quark mass set to its physical value



Nucleon spin
Parton spin and momentum contributions to nucleon spin

�x�u+d+s+g = 1.07(12)(10)JN
u+d+s+g = 0.541(62)(49)

C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou, A. Vaquero, and C. Wiese 
Phys. Rev. Lett. 119, (2017) 142002
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Outline 
‣ Methods 

– Lattice methods for nucleon structure 

– Challenges: physical point simulations, disconnected diagrams 

‣ Nucleon spin from lattice QCD 
– Intrinsic quark spin contributions  

– Momentum fraction and total spin of nucleon 

– Gluon contribution 

– Quark orbital angular momentum contributions 

‣ Concluding remarks
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Nucleon structure on the lattice

Systematic uncertainties 
– Extrapolations: a, L, mπ 
– Contamination from higher energy states

X

~xs

�¸˛⟨ffl̄˛
N(xs)|ffl¸

N(0)⟩ = c0e
−E0ts + c1e

−E1ts + :::

Two-point correlation functions 
– Statistical error: 1/√N, with MC samples 
– Correlation functions: exponentially decay 

with time-separation
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Nucleon structure on the lattice

X

~xs

�¸˛⟨ffl̄˛
N(xs)|ffl¸

N(0)⟩ = c0e
−E0ts + c1e

−E1ts + :::

Prediction of yet to be observed baryons 
– Confidence through agreement between 

lattice schemes

Reproduction of light baryon masses 
– Agreement between lattice discretisations 
– Reproduction of experiment

Phys. Rev. D96 (2017) no.3, 034511 [arXiv:1704.02647]
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Nucleon structure on the lattice

X

~xs

�¸˛⟨ffl̄˛
N(xs)|ffl¸

N(0)⟩ = c0e
−E0ts + c1e

−E1ts + :::

Prediction of yet to be observed baryons 
– Confidence through agreement between 

lattice schemes

Reproduction of light baryon masses 
– Agreement between lattice discretisations 
– Reproduction of experiment

Phys. Rev. D96 (2017) no.3, 034511 [arXiv:1704.02647]

For more hadron spectrum see S. Bacchio, Wednesday 14:30 session

3621 MeV (LHCb, 2017)
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Nucleon structure on the lattice 
– Lattice: moments are readily accessible

Unpolarised

O——1—2:::—n

A =  ̄‚5‚
{—iD—1 iD—2 :::iD—n} 

Helicity

O‌——1—2:::—n

T =  ̄ff‌{—iD—1 iD—2 :::iD—n} 
Transverse

-

-

For details on charges see J. Finkenrath, next talk

O——1—2:::—n

V =  ̄‚{—iD—1 iD—2 :::iD—n} 

⟨1⟩u−d = gV ; ⟨x⟩u−d ; :::

⟨1⟩∆u−∆d = gA; ⟨x⟩∆u−∆d ; :::

⟨1⟩‹u−‹d = gT ; ⟨x⟩‹u−‹d ; :::
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Lattice evaluation of matrix elements
Three-point function:

Analyses for identifying excited state contributions 
– “Plateau”:

– Sum over tins “Summation”

fit to constant w.r.t tins for multiple values of ts

fit to linear form, matrix element is the slope

– Fit, including first excited states (“Two-state fit”)
Agreement between methods signals excited state suppression

G—(�; ~q; ts ; tins) =
X

~xs~xins

e−i~q:~xins�¸˛⟨ffl̄˛
N(~xs ; ts)|O—(~xins; tins)|ffl¸

N(~0; 0)⟩

R(ts ; tins; t0)
ts−tins→∞−−−−−−→
tins−t0→∞

M[1 + O(e−�(tins−t0); e−�′(ts−tins))]

X

tins

R(ts ; tins; t0)
ts−t0→∞−−−−−−→ Const:+ M(ts − t0) + O(tse

−�ts )
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Lattice evaluation of matrix elements
Three-point function:

Analyses for identifying excited state contributions 
– Plateau:

– Sum over tins

fit to constant w.r.t tins for multiple values of ts

fit to linear form, matrix element is the slope

– Fit, including first excited states
Agreement between methods signals excited state suppression
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Connected, ~9,100 statistics



CaSToRC

Lattice evaluation of matrix elements
Three-point function:

Analyses for identifying excited state contributions 
– Plateau:

– Sum over tins

fit to constant w.r.t tins for multiple values of ts

fit to linear form, matrix element is the slope

– Fit, including first excited states
Agreement between methods signals excited state suppression

R(ts ; tins; t0)
ts−tins→∞−−−−−−→
tins−t0→∞

M[1 + O(e−�(tins−t0); e−�′(ts−tins))]

X

tins

R(ts ; tins; t0)
ts−t0→∞−−−−−−→ Const:+ M(ts − t0) + O(tse

−�ts )

G—(�; ~q; ts ; tins) =
X

~xs~xins

e−i~q:~xins�¸˛⟨ffl̄˛
N(~xs ; ts)|O—(~xins; tins)|ffl¸

N(~0; 0)⟩

Connected, ~9,100 statistics Disconnected, ~200,000 statistics
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Going to the physical point

E.g. multi-grid yielding 100x improvement 
of computer time at physical point 
– Multi-grid solvers 
– Improved stochastic methods for taming 

noise in disconnected diagrams



CaSToRC

Going to the physical point

E.g. multi-grid yielding 100x improvement 
of computer time at physical point 
– Multi-grid solvers 
– Improved stochastic methods for taming 

noise in disconnected diagrams



CaSToRC

Going to the physical point

E.g. multi-grid yielding 100x improvement 
of computer time at physical point 
– Multi-grid solvers 
– Improved stochastic methods for taming 

noise in disconnected diagrams

Select lattice simulation points 
used for hadron structure 
– Multiple collaborations 

simulating at physical pion 
mass
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Quark intrinsic spin contributions
Axial matrix element of nucleon: 

– Isovector contribution, τα=τ3, no disconnected contribution 
– Isoscalar contribution, τα=1, disconnected contributions 
– Strange-quark contribution, completely disconnected

⟨N(~p)|A¸
—|N(~p)⟩; A¸

— =  ̄
fi¸

2
‚5‚— 

1

2
�� =

1

2

X

q=u;d;s;:::

gq
A

– Nf=2 Twisted mass fermions, 483x96 
– mπ=131 MeV, a=0.0938 fm 
– Connected: statistics of 9,120 
– Three sinks-source separations
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Quark intrinsic spin contributions
Axial matrix element of nucleon: 

– Isovector contribution, τα=τ3, no disconnected contribution 
– Isoscalar contribution, τα=1, disconnected contributions 
– Strange-quark contribution, completely disconnected

⟨N(~p)|A¸
—|N(~p)⟩; A¸

— =  ̄
fi¸

2
‚5‚— 

– Nf=2 Twisted mass fermions, 483x96 
– mπ=131 MeV, a=0.0938 fm 
– Disconnected: statistics of 2,100,000 
– All time-slices (generalized one-end trick) 
– Stochastic vectors 

– Light: 2250 
– Strange: TSM with (HP,LP) = (63,1024)

1

2
�� =

1

2

X

q=u;d;s;:::

gq
A
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Quark intrinsic spin contributions
Quark intrinsic spin contributions to nucleon spin 
– Mild cut-off effects 
– Strange and down-quark contributions negative 
– Overall agreement between formulations, and with experimental determinations 
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Quark intrinsic spin contributions
Quark intrinsic spin contributions to nucleon spin 
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Quark intrinsic spin contributions
Quark intrinsic spin contributions to nucleon spin 
– Mild cut-off effects 
– Strange and down-quark contributions negative 
– Overall agreement between formulations, and with experimental determinations 

u, d, and s intrinsic spin contributions at 
20(2)% of 1/2, at physical pion mass
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Nucleon spin
Total parton spin contributions to nucleon spin

– Ji’s spin sum rule: 

– Quark contribution: 

where          and          are obtained from the matrix element of the first derivative 
operator:                             , i.e. 

JN=
X

q=u;d;s;c···

„
1

2
��q + Lq

«
+ Jg

1

2
��q + Lq = Jq =

1

2
[Aq

20(0) + Bq
20(0)]

O——1

V =  ̄‚{—iD—1} Aq
20(0) = ⟨x⟩q

– Connected contributions 
– Increasing statistics with increasing 

sink-source separation 
– 62,000 statistics at largest (~1.7 fm)

Aq
20(0) Bq

20(0)
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Nucleon spin
Total parton spin contributions to nucleon spin

– Ji’s spin sum rule: 

– Quark contribution: 

where          and          are obtained from the matrix element of the first derivative 
operator:                             , i.e. 

JN=
X

q=u;d;s;c···

„
1

2
��q + Lq

«
+ Jg

1

2
��q + Lq = Jq =

1

2
[Aq

20(0) + Bq
20(0)]

O——1

V =  ̄‚{—iD—1} Aq
20(0) = ⟨x⟩q

– Disconnected contributions 
– 120,000 statistics 
– Exact low-mode construction of 

loops with 500 eigenvectors 
– 1,000 stochastic vectors for 

remaining 

Aq
20(0) Bq

20(0)
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Nucleon spin
Total parton spin contributions to nucleon spin

– Ji’s spin sum rule: 

– Quark contribution: 

where          and          are obtained from the matrix element of the first derivative 
operator:                             , i.e. 

– Similarly for gluon contribution need disconnected diagram 
– Statistics: 210,000. Stout smeared gluon fileds.                          

JN=
X

q=u;d;s;c···

„
1

2
��q + Lq

«
+ Jg

1

2
��q + Lq = Jq =

1

2
[Aq

20(0) + Bq
20(0)]

O——1

V =  ̄‚{—iD—1} Aq
20(0) = ⟨x⟩q

C. Alexandrou et al., PRD, arXiv:1611.06901

Aq
20(0) Bq

20(0)

O =
2

9

˛

a4
[
X

i

ℜ(Pi4) −
X

i<j

ℜ(Pi j)]
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Nucleon spin
Parton spin and momentum contributions to nucleon spin

C. Alexandrou et al., PRL, arXiv:1706.02973

JNu+d+s+g = 0:541(62)(49)

– Includes u, d, s, and gluons simulated at 
physical pion mass 

– Spin and momentum sums satisfied within 
errors  

– Significant disconnected contributions (solid) 
compared to connected (hatched)  

– About 10% uncertainties in component 
contributions 
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Nucleon spin
Parton spin and momentum contributions to nucleon spin

C. Alexandrou et al., PRL, arXiv:1706.02973

– Includes u, d, s, and gluons simulated at 
physical pion mass 

– Spin and momentum sums satisfied within 
errors  

– Significant disconnected contributions (solid) 
compared to connected (hatched)  

– About 10% uncertainties in component 
contributions 

⟨x⟩u+d+s+g = 1:07(12)(10)
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Nucleon spin
Parton spin and momentum contributions to nucleon spin

C. Alexandrou et al., PRL, arXiv:1706.02973

– Angular momentum contribution deduced from 
difference of total and intrinsic quark spin  

– Angular momentum: hatches 
– Intrinsic spin: solid

Jq=
1

2
��q + Lq

1
2�� J L

u 0.415(13)(2) 0.308(30)(24) -0.107(32)(24)
d -0.193(8)(3) 0.054(29)(24) 0.247(30)(24)
s -0.021(5)(1) 0.046(21)(0) 0.067(21)(1)
g - 0.133(11)(14) -

tot. 0.201(17)(5) 0.541(62)(49) 0.207(64)(45)
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Summary

★Lattice QCD approaching precision era for matrix elements 
• Physical pion mass simulations from a number of collaborations 

• Other systematic uncertainties coming under control 

★Nucleon spin decomposition from lattice QCD 
• First results which include quark and gluon contributions at physical point 

promising 

• More results coming out at physical point using other lattice actions (see 
e.g. arXiv:1710.09011 by the Kentucky group) 

• Corroborates small contribution from quark intrinsic spins
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★ETM Collaboration 

★Collaborators: 
• C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, 

K. Jansen, Ch. Kallidonis, F. Steffens, A. Vaquero, C. Wiese

Cyprus (Univ. of Cyprus, Cyprus Inst.), France (Orsay, Grenoble), 
Germany (Berlin/Zeuthen, Bonn, Frankfurt, Hamburg, Münster), 
Italy (Rome I, II, III, Trento), Netherlands (Groningen), Poland 
(Poznan), Spain (Valencia), Switzerland (Bern), UK (Liverpool), US 
(Temple, PA)
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Backup
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Nucleon spin
Parton spin and momentum contributions to nucleon spin

– Includes u, d, s, and gluons simulated at physical pion mass 
– Spin and momentum sums satisfied within errors 

C. Alexandrou et al., PRL, arXiv:1706.02973

JNu+d+s+g = 0:541(62)(49)

Total spin decomposition
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Indicative computer time 
requirements for nucleon structure

Multi-petascale to exa-scale requirements

10 12 14 16 18
ts/a

10 2

10 1

100

101

102

gS
gA
gT
xq
gE
GM(1)
xDq

Increased time separations required 
for suppression of excited states at 

physical point
⟼
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Gluon moment

1

2
=

X

q

(
1

2
�⌃q + Lq) + JGJi’s spin sum:

Renormalisation 

• Mixing with quark operator 

JG =
1

2
[AG

20(0) + BG
20(0)]


